Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Minkowski's inequality" wg kryterium: Temat


Wyświetlanie 1-5 z 5
Tytuł:
A new result on the quasi power increasing sequences
Autorzy:
Özarslan, Hikmet Seyhan
Powiązania:
https://bibliotekanauki.pl/articles/1797172.pdf
Data publikacji:
2020-02-07
Wydawca:
Uniwersytet Pedagogiczny im. Komisji Edukacji Narodowej w Krakowie
Tematy:
almost increasing sequence
Hölder inequality
infinite series
Minkowski inequality
Riesz mean
quasi power increasing sequence
summability factor
Opis:
This paper presents a theorem dealing with absolute matrix summability of infinite series. This theorem has been proved taking quasi $β$-power increasing sequence instead of almost increasing sequence.
Źródło:
Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica; 2020, 19; 95-103
2300-133X
Pojawia się w:
Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Conjugate functions, lp-norm like functionals, the generalized Hölder inequality, Minkowski inequality and subhomogeneity
Autorzy:
Matkowski, J.
Powiązania:
https://bibliotekanauki.pl/articles/255030.pdf
Data publikacji:
2014
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
Lp-norm like functional
homogeneity
subhomogeneity
subadditivity
Minkowski inequality
Hölder inequality
converses
generalization of the Minkowski and Hölder inequalities
conjugate functions
complementary functions
Young conjugate functions
convex function
geometrically convex function
Wright convex function
functional equation
Opis:
For h : (0,∞) → R, the function h* (t) := th( 1/t ) is called (*)-conjugate to h. This conjugacy is related to the Hölder and Minkowski inequalities. Several properties of (*)-conjugacy are proved. If φ and φ* are bijections of (0,∞) then [formula]. Under some natural rate of growth conditions at 0 and ∞, if φ is increasing, convex, geometrically convex, then [formula] has the same properties. We show that the Young conjugate functions do not have this property. For a measure space (Ω,Σ,μ) denote by S = (Ω,Σ,μ) the space of all μ-integrable simple functions x : Ω → R, Given a bijection φ : (0,∞) → (0,∞) define [formula] by [formula] where Ω(x) is the support of x. Applying some properties of the (*) operation, we prove that if ƒ xy ≤ Pφ(x)Pψ (y) where [formula] and [formula] are conjugate, then φ and ψ are conjugate power functions. The existence of nonpower bijections φ and ψ with conjugate inverse functions [formula] such that Pφ and Pψ are subadditive and subhomogeneous is considered.
Źródło:
Opuscula Mathematica; 2014, 34, 3; 523-560
1232-9274
2300-6919
Pojawia się w:
Opuscula Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Convex-like inequality, homogeneity, subadditivity, and a characterization of $L^p$-norm
Autorzy:
Matkowski, Janusz
Pycia, Marek
Powiązania:
https://bibliotekanauki.pl/articles/1311612.pdf
Data publikacji:
1995
Wydawca:
Polska Akademia Nauk. Instytut Matematyczny PAN
Tematy:
functional inequality
subadditive functions
homogeneous functions
Banach functionals
convex functions
linear space
cones
measure space
integrable step functions
$L^p$-norm
Minkowski's inequality
Opis:
Let a and b be fixed real numbers such that 0 < min{a,b} < 1 < a + b. We prove that every function f:(0,∞) → ℝ satisfying f(as + bt) ≤ af(s) + bf(t), s,t > 0, and such that $limsup_{t → 0+} f(t) ≤ 0$ must be of the form f(t) = f(1)t, t > 0. This improves an earlier result in [5] where, in particular, f is assumed to be nonnegative. Some generalizations for functions defined on cones in linear spaces are given. We apply these results to give a new characterization of the $L^p$-norm.
Źródło:
Annales Polonici Mathematici; 1994-1995, 60, 3; 221-230
0066-2216
Pojawia się w:
Annales Polonici Mathematici
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The converse of the Hölder inequality and its generalizations
Autorzy:
Matkowski, Janusz
Powiązania:
https://bibliotekanauki.pl/articles/1290537.pdf
Data publikacji:
1994
Wydawca:
Polska Akademia Nauk. Instytut Matematyczny PAN
Tematy:
measure space
integrable step functions
conjugate functions
a converse of Hölder inequality
subadditive function
convex function
generalized Hölder-Minkowski inequality
Opis:
Let (Ω,Σ,μ) be a measure space with two sets A,B ∈ Σ such that 0 < μ (A) < 1 < μ (B) < ∞ and suppose that ϕ and ψ are arbitrary bijections of [0,∞) such that ϕ(0) = ψ(0) = 0. The main result says that if $ʃ_Ω xydμ ≤ ϕ^{-1} (\int_{Ω} ϕ∘x dμ) ψ^{-1} (\int_{Ω} ψ∘x dμ)$ for all μ-integrable nonnegative step functions x,y then ϕ and ψ must be conjugate power functions. If the measure space (Ω,Σ,μ) has one of the following properties: (a) μ (A) ≤ 1 for every A ∈ Σ of finite measure; (b) μ (A) ≥ 1 for every A ∈ Σ of positive measure, then there exist some broad classes of nonpower bijections ϕ and ψ such that the above inequality holds true. A general inequality which contains integral Hölder and Minkowski inequalities as very special cases is also given.
Źródło:
Studia Mathematica; 1994, 109, 2; 171-182
0039-3223
Pojawia się w:
Studia Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Subadditive functions and partial converses of Minkowski's and Mulholland's inequalities
Autorzy:
Matkowski, J.
Świątkowski, T.
Powiązania:
https://bibliotekanauki.pl/articles/1208624.pdf
Data publikacji:
1993
Wydawca:
Polska Akademia Nauk. Instytut Matematyczny PAN
Tematy:
subadditive function
homeomorphisms of $ℝ_+$
Mulholland's inequality
convex function
iteration
measure space
the converse of Minkowski's inequality
Opis:
Let ϕ be an arbitrary bijection of $ℝ_+$. We prove that if the two-place function $ϕ^{-1}[ϕ (s)+ϕ (t)]$ is subadditive in $ℝ^2_+$ then $ϕ $ must be a convex homeomorphism of $ℝ_+$. This is a partial converse of Mulholland's inequality. Some new properties of subadditive bijections of $ℝ_+$ are also given. We apply the above results to obtain several converses of Minkowski's inequality.
Źródło:
Fundamenta Mathematicae; 1993, 143, 1; 75-85
0016-2736
Pojawia się w:
Fundamenta Mathematicae
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-5 z 5

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies