- Tytuł:
- Conjugate functions, lp-norm like functionals, the generalized Hölder inequality, Minkowski inequality and subhomogeneity
- Autorzy:
- Matkowski, J.
- Powiązania:
- https://bibliotekanauki.pl/articles/255030.pdf
- Data publikacji:
- 2014
- Wydawca:
- Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
- Tematy:
-
Lp-norm like functional
homogeneity
subhomogeneity
subadditivity
Minkowski inequality
Hölder inequality
converses
generalization of the Minkowski and Hölder inequalities
conjugate functions
complementary functions
Young conjugate functions
convex function
geometrically convex function
Wright convex function
functional equation - Opis:
- For h : (0,∞) → R, the function h* (t) := th( 1/t ) is called (*)-conjugate to h. This conjugacy is related to the Hölder and Minkowski inequalities. Several properties of (*)-conjugacy are proved. If φ and φ* are bijections of (0,∞) then [formula]. Under some natural rate of growth conditions at 0 and ∞, if φ is increasing, convex, geometrically convex, then [formula] has the same properties. We show that the Young conjugate functions do not have this property. For a measure space (Ω,Σ,μ) denote by S = (Ω,Σ,μ) the space of all μ-integrable simple functions x : Ω → R, Given a bijection φ : (0,∞) → (0,∞) define [formula] by [formula] where Ω(x) is the support of x. Applying some properties of the (*) operation, we prove that if ƒ xy ≤ Pφ(x)Pψ (y) where [formula] and [formula] are conjugate, then φ and ψ are conjugate power functions. The existence of nonpower bijections φ and ψ with conjugate inverse functions [formula] such that Pφ and Pψ are subadditive and subhomogeneous is considered.
- Źródło:
-
Opuscula Mathematica; 2014, 34, 3; 523-560
1232-9274
2300-6919 - Pojawia się w:
- Opuscula Mathematica
- Dostawca treści:
- Biblioteka Nauki