Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Grey Wolf Optimization" wg kryterium: Temat


Wyświetlanie 1-10 z 10
Tytuł:
Investigating multi-objective time, cost, and risk problems using the Grey Wolf Optimization algorithm
Autorzy:
Yilmaz, Mehmet
Dede, Tayfun
Grzywiński, Maksym
Powiązania:
https://bibliotekanauki.pl/articles/31342511.pdf
Data publikacji:
2023
Wydawca:
Politechnika Częstochowska
Tematy:
multi-objective optimization
grey wolf optimization algorithm
time-cost-risk
optymalizacja wielocelowa
algorytm optymalizacji szarego wilka
czas-koszt-ryzyko
Opis:
Safety plays a crucial role in construction projects. Safety risks encompass potential hazards such as work accidents, injuries, and security. Consequently, it is important to effectively manage these risks with equal emphasis on time and cost considerations during the project planning phase. Within the scope of this research, the grid and archive-based Grey Wolf Optimizer (GWO) algorithm was employed to investigate multi-objective time-cost-risk problems. By employing the GWO, multiple Pareto solutions were provided to the decisionmaker, facilitating improved decision-making. It was determined that the GWO algorithm yields better results in time-cost-risk problems compared to the Particle Swarm Optimization (PSO) and Differential Evolution (DE) algorithms.
Źródło:
Budownictwo o Zoptymalizowanym Potencjale Energetycznym; 2023, 12; 79-86
2299-8535
2544-963X
Pojawia się w:
Budownictwo o Zoptymalizowanym Potencjale Energetycznym
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The application of different optimization techniques and Artificial Neural Networks (ANN) for coal-consumption forecasting: a case study
Zastosowanie różnych technik optymalizacji i sztucznych sieci neuronowych (SSN) do prognozowania zużycia węgla: studium przypadku
Autorzy:
Seker, Mustafa
Unal Kartal, Neslihan
Karadirek, Selin
Gulludag, Cevdet Bertan
Powiązania:
https://bibliotekanauki.pl/articles/2173847.pdf
Data publikacji:
2022
Wydawca:
Polska Akademia Nauk. Instytut Gospodarki Surowcami Mineralnymi i Energią PAN
Tematy:
coal consumption
metaheuristic optimization
grey wolf optimization
particle swarm optimization
whale optimization
zużycie węgla
optymalizacja metaheurystyczna
optymalizacja szarego wilka
optymalizacja roju cząstek
optymalizacja wielorybów
Opis:
The demand for energy on a global scale increases day by day. Unlike renewable energy sources, fossil fuels have limited reserves and meet most of the world’s energy needs despite their adverse environmental effects. This study presents a new forecast strategy, including an optimization-based S-curve approach for coal consumption in Turkey. For this approach, Genetic Algorithm (GA) and Particle Swarm Optimization (PSO), Grey Wolf Optimization (GWO), and Whale Optimization Algorithm (WOA) are among the meta-heuristic optimization techniques used to determine the optimum parameters of the S-curve. In addition, these algorithms and Artificial Neural Network (ANN) have also been used to estimate coal consumption. In evaluating coal consumption with ANN, energy and economic parameters such as installed capacity, gross generation, net electric consumption, import, export, and population energy are used for input parameters. In ANN modeling, the Feed Forward Multilayer Perceptron Network structure was used, and Levenberg-Marquardt Back Propagation has used to perform network training. S-curves have been calculated using optimization, and their performance in predicting coal consumption has been evaluated statistically. The findings reveal that the optimization-based S-curve approach gives higher accuracy than ANN in solving the presented problem. The statistical results calculated by the GWO have higher accuracy than the PSO, WOA, and GA with R2 = 0.9881, RE = 0.011, RMSE = 1.079, MAE = 1.3584, and STD = 1.5187. The novelty of this study, the presented methodology does not need more input parameters for analysis. Therefore, it can be easily used with high accuracy to estimate coal consumption within other countries with an increasing trend in coal consumption, such as Turkey.
Zapotrzebowanie na energię w skali globalnej rośnie z dnia na dzień. W przeciwieństwie do odnawialnych źródeł energii, paliwa kopalne mają ograniczone rezerwy i zaspokajają większość światowego zapotrzebowania na energię pomimo ich niekorzystnego wpływu na środowisko. Niniejsze opracowanie przedstawia nową strategię prognozowania, w tym oparte na optymalizacji podejście oparte na krzywej S dla zużycia węgla w Turcji. W tym podejściu algorytmy optymalizacji genetycznej (GA) i optymalizacji roju cząstek (PSO), optymalizacja Gray Wolf (GWO) i algorytm optymalizacji wielorybów (WOA) należą do metaheurystycznych technik optymalizacji stosowanych do określenia optymalnych parametrów krzywej S. Ponadto algorytmy te oraz sztuczna sieć neuronowa (SSN) zostały również wykorzystane do oszacowania zużycia węgla. Przy ocenie zużycia węgla za pomocą SSN jako parametry wejściowe wykorzystuje się parametry energetyczne i ekonomiczne, takie jak moc zainstalowana, produkcja brutto, zużycie energii elektrycznej netto, import, eksport i energia ludności. W modelowaniu SSN wykorzystano strukturę Feed Forward Multilayer Perceptron Network, a do uczenia sieci wykorzystano propagację wsteczną Levenberg-Marquardt. Krzywe S zostały obliczone za pomocą optymalizacji, a ich skuteczność w przewidywaniu zużycia węgla została oceniona statystycznie. Wyniki pokazują, że podejście oparte na optymalizacji opartej na krzywej S zapewnia większą dokładność niż SSN w rozwiązaniu przedstawionego problemu. Wyniki statystyczne obliczone przez GWO mają wyższą dokładność niż PSO, WOA i GA z R2 = 0,9881, RE = 0,011, RMSE = 1,079, MAE = 1,3584 i STD = 1,5187. Nowość tego badania, prezentowana metodyka nie wymaga dodatkowych parametrów wejściowych do analizy. Dzięki temu może być z łatwością wykorzystany z dużą dokładnością do oszacowania zużycia węgla w innych krajach o tendencji wzrostowej zużycia węgla, takich jak Turcja.
Źródło:
Gospodarka Surowcami Mineralnymi; 2022, 38, 2; 77--112
0860-0953
Pojawia się w:
Gospodarka Surowcami Mineralnymi
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Global path planning for multiple AUVs using GWO
Autorzy:
Panda, Madhusmita
Das, Bikramaditya
Pati, Bibhuti
Powiązania:
https://bibliotekanauki.pl/articles/229749.pdf
Data publikacji:
2020
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
Autonomous Underwater Vehicle
AUV
Genetic Algorithm
GA
Global Path Planning
GPP
Grey Wolf Optimization
GWO
Sliding Mode Control
SMC
waypoints
Opis:
In global path planning (GPP), an autonomous underwater vehicle (AUV) tracks a predefined path. The main objective of GPP is to generate a collision free sub-optimal path with minimum path cost. The path is defined as a set of segments, passing through selected nodes known as waypoints. For smooth planar motion, the path cost is a function of the path length, the threat cost and the cost of diving. Path length is the total distance travelled from start to end point, threat cost is the penalty of collision with the obstacle and cost of diving is the energy expanse for diving deeper in ocean. This paper addresses the GPP problem for multiple AUVs in formation. Here, Grey Wolf Optimization (GWO) algorithm is used to find the suboptimal path for multiple AUVs in formation. The results obtained are compared to the results of applying Genetic Algorithm (GA) to the same problem. GA concept is simple to understand, easy to implement and supports multi-objective optimization. It is robust to local minima and have wide applications in various fields of science, engineering and commerce. Hence, GA is used for this comparative study. The performance analysis is based on computational time, length of the path generated and the total path cost. The resultant path obtained using GWO is found to be better than GA in terms of path cost and processing time. Thus, GWO is used as the GPP algorithm for three AUVs in formation. The formation follows leader-follower topography. A sliding mode controller (SMC) is developed to minimize the tracking error based on local information while maintaining formation, as mild communication exists. The stability of the sliding surface is verified by Lyapunov stability analysis. With proper path planning, the path cost can be minimized as AUVs can reach their target in less time with less energy expanses. Thus, lower path cost leads to less expensive underwater missions.
Źródło:
Archives of Control Sciences; 2020, 30, 1; 77-100
1230-2384
Pojawia się w:
Archives of Control Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Prediction of Kaplan turbine coordination tests based on least squares support vector machine with an improved grey wolf optimization algorithm
Autorzy:
Kong, Fannie
Xia, Jiahui
Yang, Daliang
Luo, Ming
Powiązania:
https://bibliotekanauki.pl/articles/2173627.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
Kaplan turbine
coordination tests
least squares support vector machine
improved grey wolf optimization
turbina Kaplana
test koordynacyjny
metoda najmniejszych kwadratów
ulepszona optymalizacja szarego wilka
Opis:
The optimum combination of blade angle of the runner and guide vane opening with Kaplan turbine can improve the hydroelectric generating the set operation efficiency and the suppression capability of oscillations. Due to time and cost limitations and the complex operation mechanism of the Kaplan turbine, the coordination test data is insufficient, making it challenging to obtain the whole curves at each head under the optimum coordination operation by field tests. The field test data is employed to propose a least-squares support vector machine (LSSVM)-based prediction model for Kaplan turbine coordination tests. Considering the small sample characteristics of the test data of Kaplan turbine coordination, the LSSVM parameters are optimized by an improved grey wolf optimization (IGWO) algorithm with mixed non-linear factors and static weights. The grey wolf optimization (GWO) algorithm has some deficiencies, such as the linear convergence factor, which inaccurately simulates the actual situation, and updating the position indeterminately reflects the absolute leadership of the leader wolf. The IGWO algorithm is employed to overcome the aforementioned problems. The prediction model is simulated to verify the effectiveness of the proposed IGWO-LSSVM. The results show high accuracy with small samples, a 2.59% relative error in coordination tests, and less than 1.85% relative error in non-coordination tests under different heads.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2021, 69, 3; art. no. e137124
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Prediction of Kaplan turbine coordination tests based on least squares support vector machine with an improved grey wolf optimization algorithm
Autorzy:
Kong, Fannie
Xia, Jiahui
Yang, Daliang
Luo, Ming
Powiązania:
https://bibliotekanauki.pl/articles/2128160.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
Kaplan turbine
coordination tests
least squares support vector machine
improved grey wolf optimization
turbina Kaplana
test koordynacyjny
metoda najmniejszych kwadratów
ulepszona optymalizacja szarego wilka
Opis:
The optimum combination of blade angle of the runner and guide vane opening with Kaplan turbine can improve the hydroelectric generating the set operation efficiency and the suppression capability of oscillations. Due to time and cost limitations and the complex operation mechanism of the Kaplan turbine, the coordination test data is insufficient, making it challenging to obtain the whole curves at each head under the optimum coordination operation by field tests. The field test data is employed to propose a least-squares support vector machine (LSSVM)-based prediction model for Kaplan turbine coordination tests. Considering the small sample characteristics of the test data of Kaplan turbine coordination, the LSSVM parameters are optimized by an improved grey wolf optimization (IGWO) algorithm with mixed non-linear factors and static weights. The grey wolf optimization (GWO) algorithm has some deficiencies, such as the linear convergence factor, which inaccurately simulates the actual situation, and updating the position indeterminately reflects the absolute leadership of the leader wolf. The IGWO algorithm is employed to overcome the aforementioned problems. The prediction model is simulated to verify the effectiveness of the proposed IGWO-LSSVM. The results show high accuracy with small samples, a 2.59% relative error in coordination tests, and less than 1.85% relative error in non-coordination tests under different heads.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2021, 69, 3; e137124, 1--9
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A novel approach for power system stabilizer control parameter selection: a case-study on two-area four-machine system
Autorzy:
Gude, Murali Krishna
Salma, Umme
Powiązania:
https://bibliotekanauki.pl/articles/2086725.pdf
Data publikacji:
2022
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
grey wolf optimizer
power system stabilizer
optimization
stability
Opis:
This paper proposes a power system stabilizer (PSS) with optimal controller parameters for damping low-frequency power oscillations in the power system. A novel meta-heuristic, weighted grey wolf optimizer (GWO) has been proposed, it is a variant of the grey wolf optimizer (GWO). The proposed WGWO algorithm has been executed in the selection of controller parameters of a PSS in a multi-area power system. A two-area four- machine test system has been considered for the performance evaluation of an optimally tuned PSS. A multi-objective function based on system eigenvalues has been minimized for obtained optimal controller parameters. The damping characteristics and eigenvalue location in the proposed approach have been compared with the other state-of-the-art- methods, which illustrates the effectiveness of the proposed approach.
Źródło:
Archives of Electrical Engineering; 2022, 71, 2; 297--407
1427-4221
2300-2506
Pojawia się w:
Archives of Electrical Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A Nature Inspired Hybrid Partitional Clustering Method Based on Grey Wolf Optimization and JAYA Algorithm
Autorzy:
Shial, Gyanaranjan
Saho, Sabita
Panigrahi, Sibarama
Powiązania:
https://bibliotekanauki.pl/articles/27312857.pdf
Data publikacji:
2023
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
grey wolf optimizer
JAYA algorithm
article swarm optimization
ine-cosinealgorithm
partitional clustering
Opis:
This paper presents a hybrid meta-heuristic algorithm that uses the grey wolfoptimization (GWO) and the JAYA algorithm for data clustering. The ideais to use the explorative capability of the JAYA algorithm in the exploitativephase of GWO to form compact clusters. Here, instead of using only one bestand one worst solution for generating offspring, the three best wolves (alpha,beta and delta) and three worst wolves of the population are used. So, the bestand worst wolves assist in moving towards the most feasible solutions and simul-taneously it helps to avoid from worst solutions; this enhances the chances oftrapping at local optimal solutions. The superiority of the proposed algorithmis compared with five promising algorithms; namely, the sine-cosine (SCA),GWO, JAYA, particle swarm optimization (PSO), and k-means algorithms.The performance of the proposed algorithm is evaluated for 23 benchmarkmathematical problems using the Friedman and Nemenyi hypothesis tests. Ad-ditionally, the superiority and robustness of our proposed algorithm is testedfor 15 data clustering problems by using both Duncan's multiple range test andthe Nemenyi hypothesis test.
Źródło:
Computer Science; 2023, 24 (3); 361--405
1508-2806
2300-7036
Pojawia się w:
Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Photovoltaic power prediction based on improved grey wolf algorithm optimized back propagation
Autorzy:
He, Ping
Dong, Jie
Wu, Xiaopeng
Yun, Lei
Yang, Hua
Powiązania:
https://bibliotekanauki.pl/articles/27309934.pdf
Data publikacji:
2023
Wydawca:
Polska Akademia Nauk. Czasopisma i Monografie PAN
Tematy:
BP neural network
photovoltaic power generation
PSO–GWO model
PSO–GWO–BP prediction model
particle swarm optimization
gray wolf optimization
back propagation
standard grey wolf algorithm
Opis:
At present, the back-propagation (BP) network algorithm widely used in the short-term output prediction of photovoltaic power stations has the disadvantage of ignoring meteorological factors and weather conditions in the input. The existing traditional BP prediction model lacks a variety of numerical optimization algorithms, such that the prediction error is large. The back-propagation (BP) neural network is easy to fall into local optimization thus reducing the prediction accuracy in photovoltaic power prediction. In order to solve this problem, an improved grey wolf optimization (GWO) algorithm is proposed to optimize the photovoltaic power prediction model of the BP neural network. So, an improved grey wolf optimization algorithm optimized BP neural network for a photovoltaic (PV) power prediction model is proposed. Dynamic weight strategy, tent mapping and particle swarm optimization (PSO) are introduced in the standard grey wolf optimization (GWO) to construct the PSO–GWO model. The relative error of the PSO–GWO–BP model predicted data is less than that of the BP model predicted data. The average relative error of PSO–GWO–BP and GWO–BP models is smaller, the average relative error of PSO–GWO–BP model is the smallest, and the prediction stability of the PSO–GWO–BP model is the best. The model stability and prediction accuracy of PSO–GWO–BP are better than those of GWO–BP and BP.
Źródło:
Archives of Electrical Engineering; 2023, 72, 3; 613--628
1427-4221
2300-2506
Pojawia się w:
Archives of Electrical Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Fractional order PIλDμ controller with optimal parameters using Modified Grey Wolf Optimizer for AVR system
Autorzy:
Verma, Santosh Kumar
Devarapalli, Ramesh
Powiązania:
https://bibliotekanauki.pl/articles/2134890.pdf
Data publikacji:
2022
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
integer order PID controller
fractional order PID controller
automatic voltage regulator
evolutionary optimization
Grey Wolf Optimizer
Opis:
In this paper, an automatic voltage regulator (AVR) embedded with fractional order PID (FOPID) is employed for the alternator terminal voltage control. A novel meta-heuristic technique, a modified version of grey wolf optimizer (mGWO) is proposed to design and optimize the FOPID AVR system. The parameters of FOPID, namely, proportional gain (ΚP), the integral gain ( ΚI), the derivative gain ( ΚD), λ and μ have been optimally tuned with the proposed mGWO technique using a novel fitness function. The initial values of the ΚP, ΚI , and ΚD of the FOPID controller are obtained using Ziegler-Nichols (ZN) method, whereas the initial values of λ and μ have been chosen as arbitrary values. The proposed algorithm offers more benefits such as easy implementation, fast convergence characteristics, and excellent computational ability for the optimization of functions with more than three variables. Additionally, the hasty tuning of FOPID controller parameters gives a high-quality result, and the proposed controller also improves the robustness of the system during uncertainties in the parameters. The quality of the simulated result of the proposed controller has been validatedby other state-of-the-art techniques in the literature.
Źródło:
Archives of Control Sciences; 2022, 32, 2; 429--450
1230-2384
Pojawia się w:
Archives of Control Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Reactive power convex optimization of active distribution network based on Improved GreyWolf Optimizer
Autorzy:
Li, Yuancheng
Yang, Rongyan
Zhao, Xiaoyu
Powiązania:
https://bibliotekanauki.pl/articles/140678.pdf
Data publikacji:
2020
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
active distribution network (ADN)
Improved Grey Wolf Optimizer (IGWO)
reactive power optimization
second-order cone relaxed convex model
Opis:
The smart grid concept is predicated upon the pervasive With the construction and development of distribution automation, distributed power supply needs to be comprehensively considered in reactive power optimization as a supplement to reactive power. The traditional reactive power optimization of a distribution network cannot meet the requirements of an active distribution network (ADN), so the Improved Grey Wolf Optimizer (IGWO) is proposed to solve the reactive power optimization problem of the ADN, which can improve the convergence speed of the conventional GWO by changing the level of exploration and development. In addition, a weighted distance strategy is employed in the proposed IGWO to overcome the shortcomings of the conventional GWO. Aiming at the problem that reactive power optimization of an ADN is non-linear and non-convex optimization, a convex model of reactive power optimization of the ADN is proposed, and tested on IEEE33 nodes and IEEE69 nodes, which verifies the effectiveness of the proposed model. Finally, the experimental results verify that the proposed IGWO runs faster and converges more accurately than the GWO.
Źródło:
Archives of Electrical Engineering; 2020, 69, 1; 117-131
1427-4221
2300-2506
Pojawia się w:
Archives of Electrical Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-10 z 10

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies