Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Gaussian process" wg kryterium: Temat


Tytuł:
Metric entropy of convex hulls in Hilbert spaces
Autorzy:
Li, Wenbo V.
Linde, Werner
Powiązania:
https://bibliotekanauki.pl/articles/1206124.pdf
Data publikacji:
2000
Wydawca:
Polska Akademia Nauk. Instytut Matematyczny PAN
Tematy:
metric entropy
convex hull
majorizing measure
Gaussian process
Opis:
Let T be a precompact subset of a Hilbert space. We estimate the metric entropy of co(T), the convex hull of T, by quantities originating in the theory of majorizing measures. In a similar way, estimates of the Gelfand width are provided. As an application we get upper bounds for the entropy of co(T), $T={t_1,t_2,...}$, $||t_j||≤a_j$, by functions of the $a_j$'s only. This partially answers a question raised by K. Ball and A. Pajor (cf. [1]). Our estimates turn out to be optimal in the case of slowly decreasing sequences $(a_j)_{j=1}^∞$.
Źródło:
Studia Mathematica; 2000, 139, 1; 29-45
0039-3223
Pojawia się w:
Studia Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Gaussian process dynamic modeling and backstepping sliding mode control for magnetic levitation system of maglev train
Autorzy:
Sun, Yougang
Wang, Sumei
Lu, Yang
Xu, Junqi
Powiązania:
https://bibliotekanauki.pl/articles/2086959.pdf
Data publikacji:
2022
Wydawca:
Polskie Towarzystwo Mechaniki Teoretycznej i Stosowanej
Tematy:
maglev train
Gaussian process
sliding mode control
parameter perturbations
Opis:
The maglev trains are strongly nonlinear and open-loop unstable systems with external disturbances and parameters uncertainty. In this paper, the Gaussian process method is utilized to get the dynamic parameters, and a backstepping sliding mode controller is proposed for magnetic levitation systems (MLS) of maglev trains. That is, for a MLS of a maglev train, a nonlinear dynamic model with accurate parameters is obtained by the Gaussian process regression method, based on which a novel robust control algorithm is designed. Specifically, the MLS is divided into two sub-systems by a backstepping method. The inter virtual control inputs and the Lyapunov function are constructed in the first sub-system. For the second sub-system, the sliding mode surface is constructed to fulfil the design of the whole controller to asymptotically regulate the airgap to a desired trajectory. The stability of the proposed control method is analyzed by the Lyapunov method. Both simulation and experimental results are included to illustrate the superior performance of the presented method to cope with parameters perturbations and external disturbance.
Źródło:
Journal of Theoretical and Applied Mechanics; 2022, 60, 1; 49--62
1429-2955
Pojawia się w:
Journal of Theoretical and Applied Mechanics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Modelling of Li-Ion battery state-of-health with Gaussian processes
Autorzy:
Dudek, Adrian
Baranowski, Jerzy
Powiązania:
https://bibliotekanauki.pl/articles/28761940.pdf
Data publikacji:
2023
Wydawca:
Polska Akademia Nauk. Czasopisma i Monografie PAN
Tematy:
lithium-ion batteries
state of health
Gaussian process
diagnostics
Opis:
The problem of lithium-ion cells, which degrade in time on their own and while used, causes a significant decrease in total capacity and an increase in inner resistance. So, it is important to have a way to predict and simulate the remaining usability of batteries. The process and description of cell degradation are very complex and depend on various variables. Classical methods are based, on the one hand, on fitting a somewhat arbitrary parametric function to laboratory data and, on the other hand, on electrochemical modelling of the physics of degradation. Alternative solutions are machine learning ones or non-parametric ones like support-vector machines or the Gaussian process (GP), which we used in this case. Besides using the GP, our approach is based on current knowledge of how to use non-parametric approaches for modeling the electrochemical state of batteries. It also uses two different ways of dealing with GP problems, like maximum likelihood type II (ML-II) methods and the Monte Carlo Markov Chain (MCMC) sampling.
Źródło:
Archives of Electrical Engineering; 2023, 72, 3; 643--659
1427-4221
2300-2506
Pojawia się w:
Archives of Electrical Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Generalized hyperbolic processes autocovariance functions
Autorzy:
Troush, N. N.
Kuzmina, A.
Powiązania:
https://bibliotekanauki.pl/articles/92840.pdf
Data publikacji:
2014
Wydawca:
Uniwersytet Przyrodniczo-Humanistyczny w Siedlcach
Tematy:
generalized hyperbolic process
normal inverse Gaussian process
variance gamma process
autocovariation function
Opis:
Generalized hyperbolic processes are Levy processes which allow an almost perfect fit to financial data. Autocovariance functions of generalized hyperbolic processes such as the normal inverse Gaussian process, the variance gamma process and the hyperbolic process are deduced at this paper.
Źródło:
Studia Informatica : systems and information technology; 2014, 1-2(18); 37-45
1731-2264
Pojawia się w:
Studia Informatica : systems and information technology
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A study of the Inverse Gaussian Process with hazard rate functions-based drifts applied to degradation modelling
Autorzy:
Rodríguez-Picón, Luis Alberto
Méndez-González, Luis Carlos
Pérez-Olguín, Iván JC
Hernández-Hernández, Jesús Israel
Powiązania:
https://bibliotekanauki.pl/articles/2175136.pdf
Data publikacji:
2022
Wydawca:
Polska Akademia Nauk. Polskie Naukowo-Techniczne Towarzystwo Eksploatacyjne PAN
Tematy:
inverse Gaussian process
hazard rate function
degradation rate
variable drift
Opis:
The stochastic modelling of degradation processes requires different characteristics to be considered, such that it is possible to capture all the possible information about a phenomenon under study. An important characteristic is what is known as the drift in some stochastic processes; specifically, the drift allows to obtain information about the growth degradation rate of the characteristic of interest. In some phenomenon’s the growth rate cannot be considered as a constant parameter, which means that the rate may vary from trajectory to trajectory. Given this, it is important to study alternative strategies that allow to model this variation in the drift. In this paper, several hazard rate functions are integrated in the inverse Gaussian process to describe its drift in the aims of individually characterize degradation trajectories. The proposed modelling scheme is illustrated in two case studies, from which the best fitting model is selected via information criteria, a discussion of the flexibility of the proposed models is provided according to the obtained results.
Źródło:
Eksploatacja i Niezawodność; 2022, 24, 3; 590--602
1507-2711
Pojawia się w:
Eksploatacja i Niezawodność
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
One-match-ahead forecasting in two-team sports with stacked Bayesian regressions
Autorzy:
Lam, M. W. Y.
Powiązania:
https://bibliotekanauki.pl/articles/91870.pdf
Data publikacji:
2018
Wydawca:
Społeczna Akademia Nauk w Łodzi. Polskie Towarzystwo Sieci Neuronowych
Tematy:
sports analytics
one-match-ahead forecasting
winning probability
Gaussian process regression
Opis:
There is a growing interest in applying machine learning algorithms to real-world examples by explicitly deriving models based on probabilistic reasoning. Sports analytics, being favoured mostly by the statistics community and less discussed in the machine learning community, becomes our focus in this paper. Specifically, we model two-team sports for the sake of one-match-ahead forecasting. We present a pioneering modeling approach based on stacked Bayesian regressions, in a way that winning probability can be calculated analytically. Benefiting from regression flexibility and high standard of performance, Sparse Spectrum Gaussian Process Regression (SSGPR) – an improved algorithm for the standard Gaussian Process Regression (GPR), was used to solve Bayesian regression tasks, resulting in a novel predictive model called TLGProb. For evaluation, TLGProb was applied to a popular sports event – National Basketball Association (NBA). Finally, 85.28% of the matches in NBA 2014/2015 regular season were correctly predicted by TLGProb, surpassing the existing predictive models for NBA.
Źródło:
Journal of Artificial Intelligence and Soft Computing Research; 2018, 8, 3; 159-172
2083-2567
2449-6499
Pojawia się w:
Journal of Artificial Intelligence and Soft Computing Research
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Option pricing by Esscher transforms in the cases of normal inverse Gaussian and variance gamma processes
Autorzy:
Troush, N. N.
Kuzmina, A. V.
Powiązania:
https://bibliotekanauki.pl/articles/92926.pdf
Data publikacji:
2012
Wydawca:
Uniwersytet Przyrodniczo-Humanistyczny w Siedlcach
Tematy:
Esscher transforms
option pricing
generalized hyperbolic process
normal inverse Gaussian process
variance gamma process
Opis:
The class of Esscher transforms is an important tool for option pricing Gerber and Shiu (1994) showed that the Esscher transform is an efficient technique for valuing derivative securities if the log returns of the underlying securities are governed by certain stochastic processes with stationary and independent increments. Levy processes are the processes of such type. Special cases of the Levy processes such as the normal inverse Gaussian process and the variance gamma process are considered at this paper. Values of these processes parameters for the existence of Esscher transform are deduced. A new algorithm of a normal inverse Gaussian process and variance gamma process simulation is also presented in this paper. These algorithm is universal and simpler one compared with analogous algorithms.
Źródło:
Studia Informatica : systems and information technology; 2012, 1-2(16); 35-43
1731-2264
Pojawia się w:
Studia Informatica : systems and information technology
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A probabilistic approach for approximation of optical and opto-electronic properties of an opto-semiconductor wafer under consideration of measuring inaccuracy and model uncertainty
Autorzy:
Stroka, Stefan M.
Heumann, Christian
Suhrke, Fabian
Meindl, Kathrin
Powiązania:
https://bibliotekanauki.pl/articles/2204192.pdf
Data publikacji:
2023
Wydawca:
Polska Akademia Nauk. Stowarzyszenie Elektryków Polskich
Tematy:
Gaussian process regression
machine learning
uncertainty quantification
photoluminescence
opto-semiconductor wafer measuring
Opis:
This paper presents a probabilistic machine learning approach to approximate wavelength values for unmeasured positions on an opto-semiconductor wafer after epitaxy. Insufficient information about optical and opto-electronic properties may lead to undetected specification violations and, consequently, to yield loss or may cause product quality issues. Collection of information is restricted because physical measuring points are expensive and in practice samples are only drawn from 120 specific positions. The purpose of the study is to reduce the risk of uncertainties caused by sampling and measuring inaccuracy and provide reliable approximations. Therefore, a Gaussian process regression is proposed which can determine a point estimation considering measuring inaccuracy and further quantify estimation uncertainty. For evaluation, the proposed method is compared with radial basis function interpolation using wavelength measurement data of 6-inch InGaN wafers. Approximations of these models are evaluated with the root mean square error. Gaussian process regression with radial basis function kernel reaches a root mean square error of 0.814 nm averaged over all wafers. A slight improvement to 0.798 nm could be achieved by using a more complex kernel combination. However, this also leads to a seven times higher computational time. The method further provides probabilistic intervals based on means and dispersions for approximated positions.
Źródło:
Opto-Electronics Review; 2023, 31, 2; art. no. e145863
1230-3402
Pojawia się w:
Opto-Electronics Review
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Use of machine learning algorithm for the better prediction of SR peculiarities of WEDM of Nimonic-90 superalloy
Autorzy:
Singh Nain, S.
Sai, R.
Sihag, P.
Vambol, S.
Vambol, V.
Powiązania:
https://bibliotekanauki.pl/articles/378951.pdf
Data publikacji:
2019
Wydawca:
Stowarzyszenie Komputerowej Nauki o Materiałach i Inżynierii Powierzchni w Gliwicach
Tematy:
support vector machine
Gaussian process
artificial neural network
WEDM
maszyna wektorów nośnych
proces gaussowski
sztuczna sieć neuronowa
Opis:
Purpose: With the end goal to fulfil stringent structural shape of the component in aeronautics industry, machining of Nimonic-90 super alloy turns out to be exceptionally troublesome and costly by customary procedures, for example, milling, grinding, turning, etc. For that reason, the manufacture and design engineer worked on contactless machining process like EDM and WEDM. Based on previous studies, it has been observed that rare research work has been published pertaining to the use of machine learning in manufacturing. Therefore the current research work proposed the use of SVM, GP and ANN methods to evaluate the WEDM of Nimonic-90. Design/methodology/approach: The experiments have been performed on the WEDM considering five process variables. The Taguchi L 18 mixed type array is used to formulate the experimental plan. The surface roughness is checked by using surface contact profilometre. The evolutionary algorithms like SVM, GP and ANN approaches have been used to evaluate the SR of WEDM of Nimonic-90 super alloy. Findings: The entire models present the significant results for the better prediction of SR peculiarities of WEDM of Nimonic-90 superalloy. The GP PUK kernel model is dominating the entire model. Research limitations/implications: The investigation was carried for the Nimonic-90 super alloy is selected as a work material. Practical implications: The results of this study provide an opportunity to conduct contactless processing superalloy Nimonic-90. At the same time, this contactless process is much cheaper, faster and more accurate. Originality/value: An experimental work has been reported on the WEDM of Udimet-L605 and use of advance machine learning algorithm and optimization approaches like SVM, and GRA is recommended. A study on WEDM of Inconel 625 has been explored and optimized the process using Taguchi coupled with grey relational approach. The applicability of some evolutionary algorithm like random forest, M5P, and SVM also tested to evaluate the WEDM of Udimet-L605.The fuzzy- inference and BP-ANN approached is used to evaluate the WEDM process. The multi-objective optimization using ratio analysis approach has been utilized to evaluate the WEDM of high carbon & chromium steel. But this current research work proposed the use of SVM, GP and ANN methods to evaluate the WEDM of Nimonic-90.
Źródło:
Archives of Materials Science and Engineering; 2019, 95, 1; 12-19
1897-2764
Pojawia się w:
Archives of Materials Science and Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Efficient learning variable impedance control for industrial robots
Autorzy:
Li, C.
Zhang, Z.
Xia, G.
Xie, X.
Zhu, Q.
Powiązania:
https://bibliotekanauki.pl/articles/200716.pdf
Data publikacji:
2019
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
variable impedance control
reinforcement learning
efficient
Gaussian process
industrial robots
impedancja
poprawa efektywności
wydajność
model Gaussa
roboty przemysłowe
Opis:
Compared with the robots, humans can learn to perform various contact tasks in unstructured environments by modulating arm impedance characteristics. In this article, we consider endowing this compliant ability to the industrial robots to effectively learn to perform repetitive force-sensitive tasks. Current learning impedance control methods usually suffer from inefficiency. This paper establishes an efficient variable impedance control method. To improve the learning efficiency, we employ the probabilistic Gaussian process model as the transition dynamics of the system for internal simulation, permitting long-term inference and planning in a Bayesian manner. Then, the optimal impedance regulation strategy is searched using a model-based reinforcement learning algorithm. The effectiveness and efficiency of the proposed method are verified through force control tasks using a 6-DoFs Reinovo industrial manipulator.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2019, 67, 2; 201-212
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies