Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "EA-IRMS" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Evaluation of precision of hydrogen isotopic composition determinations by EA-IRMS, GC-IRMS and Py-GC-IRMS
Ocena precyzji oznaczeń składu izotopowego wodoru w układach Py-GC-IRMS, GC-IRMS oraz EA-IRMS
Autorzy:
Janiga, Marek
Kania, Małgorzata
Powiązania:
https://bibliotekanauki.pl/articles/1834110.pdf
Data publikacji:
2020
Wydawca:
Instytut Nafty i Gazu - Państwowy Instytut Badawczy
Tematy:
precision
repeatability
EA-IRMS
GC-IRMS
Py-GC-IRMS
δ2
precyzja
powtarzalność
Opis:
Praca przedstawia wyniki analiz składu izotopowego wodoru produktów pirolizy próbki łupku. Otrzymywane produkty pirolizy to: metan, eten, etan, propylen, propan, 1-buten i n-butan. Wykorzystana aparatura to spektrometr masowy Delta V Advantage firmy Thermo Scientific wraz z chromatografem Trace GC Ultra (kolumna kapilarna HP-PLOT/Q, 30 m) i pirolizerem Pyroprobe 6150 (temperatura pirolizy: 1000°C, izoterma: 30 sekund). Układ połączony jest on-line za pośrednictwem Conflo IV. Metodyka Py-GC-IRMS oznaczeń składu izotopowego wodoru gazowych produktów pirolizy została sprawdzona poprzez ocenę powtarzalności. Próbka łupku była pirolizowana w temperaturach: 500°C, 600°C, 700°C, 800°C, 900°C i 1000°C. Piroliza w 500°C nie pozwala na wydzielenie produktów. Proporcja pomiędzy nienasyconymi i nasyconymi węglowodorami zmienia się i wraz ze wzrostem temperatury zaczynają dominować węglowodory nienasycone. Skład izotopowy poszczególnych par również ulega zmianie, choć stała jest relacja pomiędzy δD nienasyconych i nasyconych węglowodorów. W przypadku wszystkich składników utrzymuje się trend, że przy wyższej temperaturze pirolizy wartości składu izotopowego są również wyższe. Dodatkowo różnice składu izotopowego w temperaturach 900°C i 1000°C są już znikome. Charakter oznaczeń składu izotopowego nie pozwala na określenie granicy oznaczalności, granicy wykrywalności oraz obciążenia metody. Wartości względnych odchyleń standardowych są poniżej pięciu procent jedynie dla metanu, etanu i propylenu. Dodatkowo wykonano testy powtarzalności dla układów EA-IRMS (analizator elementarny połączony z izotopowym spektrometrem masowym) oraz GC-IRMS (nastrzyk próbki bezpośrednio do dozownika chromatografu połączonego z ConFlo IV i spektrometrem). Wykorzystane próbki to węgiel kamienny oraz gaz ziemny. Powtarzalność oznaczeń składu izotopowego wodoru oceniana przy użyciu względnego odchylenia standardowego była najlepsza (najniższa wartość) w przypadku układu GC-IRMS (0,8%), następnie układu Py-GC-IRMS (metan przy naważce 3 mg – 1,2%) i EA-IRMS (2,3%).
Źródło:
Nafta-Gaz; 2020, 76, 9; 569-576
0867-8871
Pojawia się w:
Nafta-Gaz
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Elementy walidacji metody oznaczania δ18O i δD próbek ciekłych (EA-IRMS)
Validation of δ18O i δD determination method in aqueous samples (EA-IRMS)
Autorzy:
Janiga, M.
Bieleń, W.
Powiązania:
https://bibliotekanauki.pl/articles/1835465.pdf
Data publikacji:
2017
Wydawca:
Instytut Nafty i Gazu - Państwowy Instytut Badawczy
Tematy:
skład izotopowy tlenu
skład izotopowy wodoru
δ18O
δD
EA-IRMS
walidacja
oxygen isotopic composition
hydrogen isotopic composition
validation
Opis:
Celem pracy było wykonanie elementów walidacji metodyki oznaczeń składu izotopowego tlenu i wodoru próbek ciekłych (wody) przy użyciu spektrometru masowego połączonego z analizatorem elementarnym (EA-IRMS). Zarówno w przypadku oznaczeń składu izotopowego wodoru, jak i tlenu wykonano kalibrację przy zastosowaniu wzorca VSMOW2 oraz wyznaczono stretching factor (wykorzystując wzorzec SLAP2). Dla obydwu pierwiastków metody są dokładne (wartości rzeczywiste wzorca znajdują się w wyznaczonych przedziałach). Odchylenia standardowe powtarzalności i odtwarzalności są na niskim poziomie (dla tlenu: 0,15‰ i 0,21‰; dla wodoru: 1,2‰ i 1,3‰). Wartość niepewności pomiaru w przypadku oznaczeń składu izotopowego tlenu wynosi 0,569885% (czyli 0,310644‰ po przeliczeniu dla wzorca SLAP2), a w przypadku wodoru: 0,479804% (czyli 2,022375‰ po przeliczeniu dla wzorca SLAP2).
The aim of the study was to perform validation of a methodology of isotopic composition determinations of oxygen and hydrogen liquid samples (water) using a mass spectrometer combined with an elemental analyzer (EA-IRMS). For the determination of both the hydrogen and oxygen isotopic composition, calibration was performed by using VSMOW2 standard, and stretching factor was determined using the SLAP2 standard. For both elements methods are accurate (the actual value can be found at designated intervals). The standard deviations of repeatability and reproducibility are low (for oxygen 0.15‰ and 0.21‰, for hydrogen 1.2‰ and 1.3‰). The value of measurement uncertainty for the determination of the isotopic composition of oxygen is 0.569885% (or 0.310644‰ after calculation for the SLAP2 standard) and for hydrogen is 0.479804% (or 2.022375 ‰ after calculation for SLAP2 standard).
Źródło:
Nafta-Gaz; 2017, 73, 7; 473-478
0867-8871
Pojawia się w:
Nafta-Gaz
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies