Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Condition monitoring" wg kryterium: Temat


Tytuł:
A smart fault identification system for ball bearing using simulation-driven vibration analysis
Autorzy:
Khaire, Pallavi
Phalle, Vikas
Powiązania:
https://bibliotekanauki.pl/articles/27309884.pdf
Data publikacji:
2023
Wydawca:
Polska Akademia Nauk. Czasopisma i Monografie PAN
Tematy:
condition monitoring
bearing defect
FFT analyzer
BPFI
BPFO
multiclass support
vector machine
monitorowanie stanu
wada łożyska
analizator FFT
maszyna wektorowa
Opis:
Bearings are one of the pivotal parts of rotating machines. The health of a bearing is responsible for the hassle-free operation of a machine. As vibration signatures give intimations of machine failure at an earlier stage, mostly vibration-based condition monitoring is used to monitor bearing’s health for avoiding the risk of failure. In this work, a simulation-based approach is adopted to identify surface defects at ball bearing raceways. The vibration data in time and frequency domain is captured by FFT analyzer from an experimental setup. The time frequency domain conversion of a raw time domain data was carried out by wavelet packet transform, as it takes into account the transients and spectral frequencies. The rotor bearing model is simulated in Ansys. Finally, most influencing statistical features were extracted by employing Principal Component Analysis (PCA), and fed to Multiclass Support Vector Machine (MSVM). To train the algorithm, the simulated data is used whereas the data acquired from FFT analyzer is used for testing. It can be concluded that the defects are characterized by Ball Pass Frequency (BPF) at inner race and outer raceway as indicated in the literature. The developed model is capable to monitor bearing’s health which gives an average accuracy of 99%.
Źródło:
Archive of Mechanical Engineering; 2023, LXX, 2; 247--270
0004-0738
Pojawia się w:
Archive of Mechanical Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Agricultural Droughts Monitoring of Aceh Besar Regency Rice Production Center, Aceh, Indonesia – Application Vegetation Conditions Index using Sentinel-2 Image Data
Autorzy:
Sugianto
Rusdi, Muhammad
Budi, Muhammad
Farhan, Ahmad
Akhyar
Powiązania:
https://bibliotekanauki.pl/articles/2202332.pdf
Data publikacji:
2023
Wydawca:
Polskie Towarzystwo Inżynierii Ekologicznej
Tematy:
drought monitoring
VCI
vegetation condition index
sentinel-2A
vegetation health index
Opis:
Monitoring the agricultural drought of paddy rice fields is a crucial aspect of preparing for proper action in maintaining food security in Indonesia. The Aceh Province is one of Indonesia’s national rice production centers, especially Aceh Besar Regency; it includes three central districts; Indrapuri, Kuta Cot Glie, and Seulimeum. Satellite-Sentinel 2A data have been tested to monitor the drought levels of around 2,803 Ha in the three districts in this study. This study aimed to determine the drought level in Indrapuri, Kuta Cot Glie, and Seulimeum districts, Aceh Besar Regency’s paddy rice fields using Sentinel-2A data imagery. The vegetation conditions index (VCI) of Sentinel-2 data was utilized to identify a vegetative drought level in the area for the 2018, 2019, 2020, 2021, and 2022 growing seasons. The vegetation inertia index is derived from the Normalized Difference Vegetation Index (NDVI). The results show that the VCI looked volatile, but the trendline increased by four percent, from 92.56 in July 2019 to 96.08 in July 2021. Most areas on the dates investigated found that the no drought category was still dominant. The designated data analyzed found that the June 2022 data tend to be distributed to the drought in extreme, severe, moderate, and mild increases compared to the previous data investigated. This figure shows an increasing drought in the study area, and the average drought index is in the category of mild drought. In addition, there has been a trendline decline in the value of NDVI in recent years, causing agricultural land for paddy rice fields to be slightly vulnerable to drought.
Źródło:
Journal of Ecological Engineering; 2023, 24, 1; 159--171
2299-8993
Pojawia się w:
Journal of Ecological Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
An experimental study of the effects of cylinder lubricating oils on the vibration characteristics of a two-stroke low-speed marine diesel engine
Autorzy:
Wu, Gang
Jiang, Guodong
Chen, Changsheng
Jiang, Guohe
Pu, Xigang
Chen, Biwen
Powiązania:
https://bibliotekanauki.pl/articles/34603764.pdf
Data publikacji:
2023
Wydawca:
Politechnika Gdańska. Wydział Inżynierii Mechanicznej i Okrętownictwa
Tematy:
two-stroke
low-speed marine diesel engine
cylinder lubricating oils
vibration characteristic
condition monitoring
Opis:
Two-stroke, low-speed diesel engines are widely used in large ships due to their good performance and fuel economy. However, there have been few studies of the effects of lubricating oils on the vibration of two-stroke, low-speed diesel engines. In this work, the effects of three different lubricating oils on the vibration characteristics of a low-speed engine are investigated, using the frequency domain, time-frequency domain, fast Fourier transform (FFT) and short-time Fourier transform (STFT) methods. The results show that non-invasive condition monitoring of the wear to a cylinder liner in a low-speed marine engine can be successfully achieved based on vibration signals. Both the FFT and STFT methods are capable of capturing information about combustion in the cylinder online in real time, and the STFT method also provides the ability to visualise the results with more comprehensive information. From the online condition monitoring of vibration signals, cylinder lubricants with medium viscosity and medium alkali content are found to have the best wear protection properties. This result is consistent with those of an elemental analysis of cylinder lubrication properties and an analysis of the data measured from a piston lifted from the cylinder after 300 h of engine operation.
Źródło:
Polish Maritime Research; 2023, 4; 92-101
1233-2585
Pojawia się w:
Polish Maritime Research
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Camera-based PHM method in rotating machinery equipment micro-action scenarios
Autorzy:
Junfeng, An
Liu, Jiqiang
Zhen, Hao
Mengmeng, Lu
Powiązania:
https://bibliotekanauki.pl/articles/24200809.pdf
Data publikacji:
2023
Wydawca:
Polska Akademia Nauk. Polskie Naukowo-Techniczne Towarzystwo Eksploatacyjne PAN
Tematy:
deep learning
condition monitoring
Rmcad
anomaly detection
defect early warning
Opis:
The health operation of rotating machinery guarantees safety of the project. To ensure a good operating environment, current subway equipment inspections frequency is high, resulting in a waste of resources. Small abnormal changes in mechanical equipment will also contribute to the development of mechanical component defects, which will ultimately lead to the failure of the equipment. Therefore, mechanical equipment defects should be detected and diagnosed as soon as possible. Through the use of graphic processing and deep learning, this paper proposes Rmcad Framework with three aspects: condition monitoring, anomaly detection, defect early warning. Using a network algorithm, this paper proposes an improved model that has the characteristics of two-stream and multi-loss functions, which improves the accuracy of detection. Additionally, a defect warning method is constructed to improve the perception ability of equipment before failure occurs and reduce the frequency of frequent maintenance by detecting anomalies according to the degree of opening.
Źródło:
Eksploatacja i Niezawodność; 2023, 25, 1; art. no. 10
1507-2711
Pojawia się w:
Eksploatacja i Niezawodność
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Fault diagnosis of high-speed rotating machines using MATLAB
Autorzy:
Joshi, Mahesh B.
Pujari, Kamlesh S.
Powiązania:
https://bibliotekanauki.pl/articles/2203637.pdf
Data publikacji:
2023
Wydawca:
Polska Akademia Nauk. Polskie Towarzystwo Diagnostyki Technicznej PAN
Tematy:
fault diagnosis
condition monitoring
MATLAB
diagnostyka uszkodzeń
monitorowanie stanu
Opis:
Industrial high-speed rotating machines entail constant and consistent monitoring to prevent downtime, affecting quantity and quality. Complex machines need advanced intelligent fault diagnosis showing minimal errors. This work offers a MATLAB-based fault diagnosis for sugar industry machines. The vibration behavior of physical industrial machines is obtained, and the signals are provided to a MATLAB program to identify the fault. The information helps to suggest remedies to include in the maintenance schedule. The ease and comprehensible nature of the method reduce time and enhance the reliability of condition monitoring for industrial machines.
Źródło:
Diagnostyka; 2023, 24, 2; art. no. 2023208
1641-6414
2449-5220
Pojawia się w:
Diagnostyka
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Generative modelling of vibration signals in machine maintenance
Autorzy:
Puchalski, Andrzej Adam
Komorska, Iwona
Powiązania:
https://bibliotekanauki.pl/articles/28086927.pdf
Data publikacji:
2023
Wydawca:
Polska Akademia Nauk. Polskie Naukowo-Techniczne Towarzystwo Eksploatacyjne PAN
Tematy:
time-frequency analysis
condition monitoring
anomalies detection
deep generative models
variational autoencoder
data distribution
Opis:
The exponential development of technologies for the acquisition, collection, and processing of data from real-world objects is creating new perspectives in the field of machine maintenance. The Industrial Internet of Things is the source of a huge collection of measurement data. The performance of classification or regression algorithms needs to take into account the random nature of the process being modelled and any incomplete observability, especially in terms of failure states. The article highlights the practical possibilities of using generative artificial intelligence and deep machine learning systems to create synthetic measurement observations in monitoring the vibrations of rotating machinery to improve unbalanced databases. Variational AutoencoderVAE generative models with latent variables in the form of high-level input features of time-frequency spectra were studied. The mapping and generation algorithm was optimised and its effectiveness was tested in the practical solution of the task of diagnosing the three operating states of a demonstration gearbox.
Źródło:
Eksploatacja i Niezawodność; 2023, 25, 4; art. no. 173488
1507-2711
Pojawia się w:
Eksploatacja i Niezawodność
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Hydro-ecological State of Ukrainian Water Bodies Under the Influence of Military Actions
Autorzy:
Stelmakh, Valentyna
Melniichuk, Mykhailo
Melnyk, Oleh
Tokarchuk, Ivan
Powiązania:
https://bibliotekanauki.pl/articles/27315751.pdf
Data publikacji:
2023
Wydawca:
Politechnika Koszalińska. Wydawnictwo Uczelniane
Tematy:
hydro-ecological condition
water body
martial law
water quality monitoring
water infrastructure
pollution
flooding
Opis:
The article aims to analyse the impact of military operations on the hydro-ecological state of water bodies in Ukraine, analyse potential military risks and assess the prospects for recovery in the water sector. The war leads to the destruction of water supply infrastructure and, secondly, to the pollution of natural waters with sewage and ammunition. Thus, Ukraine's hydro-ecological condition of natural watercourses and reservoirs is deteriorating during a full-scale war. First, we analysed the literature and modern scientific publications and studied the current state of the water bodies of Ukraine under martial law. The article analyses the key consequences of military operations on water bodies, including the destruction of water infrastructure and hydraulic structures, contamination by explosives and destroyed military equipment, flooding by mine water, and leaks from tailing ponds. Special attention is paid to the results of water quality monitoring in wartime. The authors systematised and reviewed the key incidents of destruction and damage to hydraulic structures since the beginning of the war. Potential risks to water bodies in the context of Russian aggression are studied. Finally, the author analyses the directions of the post-war reconstruction of Ukraine and proposes a list of practical steps necessary to restore water resources. The author's view on post-war reconstruction measures in water resources is offered. In addition, environmental organisations and local authorities can use the results of this scientific research.
Źródło:
Rocznik Ochrona Środowiska; 2023, 25; 174--187
1506-218X
Pojawia się w:
Rocznik Ochrona Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Method of machining centre sliding system fault detection using torque signals and autoencoder
Autorzy:
Augustyn, Damian
Fidali, Marek
Powiązania:
https://bibliotekanauki.pl/articles/2233649.pdf
Data publikacji:
2023
Wydawca:
Politechnika Białostocka. Oficyna Wydawnicza Politechniki Białostockiej
Tematy:
condition monitoring
torque signal
machining centre
anomaly detection
autoencoder
Opis:
The sliding system of machining centres often causes maintenance and process problems. Improper operation of the sliding system can result from wear of mechanical parts and drives faults. To detect the faulty operation of the sliding system, measurements of the torque of its servomotors can be used. Servomotor controllers can measure motor current, which can be used to calculate motor torque. For research purposes, the authors used a set of torque signals from the machining centre servomotors that were acquired over a long period. The signals were collected during a diagnostic test programmed in the machining centre controller and performed once per day. In this article, a method for detecting anomalies in torque signals was presented for the condition assessment of the machining centre sliding systems. During the research, an autoencoder was used to detect the anomaly, and the condition was assessed based on the value of the reconstruction error. The results indicate that the anomaly detection method using an autoencoder is an effective solution for detecting damage to the sliding system and can be easily used in a condition monitoring system.
Źródło:
Acta Mechanica et Automatica; 2023, 17, 3; 445--451
1898-4088
2300-5319
Pojawia się w:
Acta Mechanica et Automatica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Multi-feature spatial distribution alignment enhanced domain adaptive method for tool condition monitoring
Autorzy:
Hei, Zhendong
Sun, Bintao
Wang, Gaonghai
Lou, Yongjian
Yuqing, Zhou
Powiązania:
https://bibliotekanauki.pl/articles/28328268.pdf
Data publikacji:
2023
Wydawca:
Polska Akademia Nauk. Polskie Naukowo-Techniczne Towarzystwo Eksploatacyjne PAN
Tematy:
condition monitoring
Transfer learning
correlation alignment
joint maximum mean difference
feature extractor
Opis:
Transfer learning (TL) has been successfully implemented in tool condition monitoring (TCM) to address the lack of labeled data in real industrial scenarios. In current TL models, the domain offset in the joint distribution of input feature and output label still exists after the feature distribution of the two domains is aligned, resulting in performance degradation. A multiple feature spatial distribution alignment (MSDA) method is proposed, Including Correlation alignment for deep domain adaptation (DeepCORAL) and Joint maximum mean difference (JMMD). Deep CORAL is employed to learn nonlinear transformations, align source and target domains at the feature level through the second-order statistical correlations. JMMD is applied to improve domain alignmentby aligning the joint distribution of input features and output labels. ResNet18 combining with bidirectional short-term memory network and attention mechanism is developed to extract the invariant features. TCM experiments with four transfer tasks were conducted and demonstrated the effectiveness of the proposed method.
Źródło:
Eksploatacja i Niezawodność; 2023, 25, 4; art. no. 171750
1507-2711
Pojawia się w:
Eksploatacja i Niezawodność
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Time-frequency Representation -enhanced Transfer Learning for Tool Condition Monitoring during milling of Inconel 718
Autorzy:
Zhou, Yuqing
Sun, Wei
Ye, Canyang
Peng, Bihui
Fang, Xu
Lin, Canyu
Wang, Gonghai
Kumar, Anil
Sun, Weifang
Powiązania:
https://bibliotekanauki.pl/articles/24200823.pdf
Data publikacji:
2023
Wydawca:
Polska Akademia Nauk. Polskie Naukowo-Techniczne Towarzystwo Eksploatacyjne PAN
Tematy:
tool condition monitoring
time-frequency analysis
Markov Transition Field
transfer learning
Opis:
Accurate tool condition monitoring (TCM) is important for the development and upgrading of the manufacturing industry. Recently, machine-learning (ML) models have been widely used in the field of TCM with many favorable results. Nevertheless, in the actual industrial scenario, only a few samples are available for model training due to the cost of experiments, which significantly affects the performance of ML models. A time-series dimension expansion and transfer learning (TL) method is developed to boost the performance of TCM for small samples. First, a time-frequency Markov transition field (TFMTF) is proposed to encode the cutting force signal in the cutting process to two-dimensional images. Then, a modified TL network is established to learn and classify tool conditions under small samples. The performance of the proposed TFMTF-TL method is demonstrated by the benchmark PHM 2010 TCM dataset. The results show the proposed method effectively obtains superior classification accuracies for small samples and outperforms other four benchmark methods.
Źródło:
Eksploatacja i Niezawodność; 2023, 25, 2; art. no. 165926
1507-2711
Pojawia się w:
Eksploatacja i Niezawodność
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Towards sustainable and intelligent machining: energy footprint and tool condition monitoring for media-assisted processes
Autorzy:
Dogan, Hakan
Jones, Llyr
Hall, Stephanie
Shokrani, Alborz
Powiązania:
https://bibliotekanauki.pl/articles/24084657.pdf
Data publikacji:
2023
Wydawca:
Wrocławska Rada Federacji Stowarzyszeń Naukowo-Technicznych
Tematy:
machining
deep learning
tool condition monitoring
energy footprint
Opis:
Reducing energy consumption is a necessity towards achieving the goal of net-zero manufacturing. In this paper, the overall energy footprint of machining Ti-6Al-4V using various cooling/lubrication methods is investigated taking the embodied energy of cutting tools and cutting fluids into account. Previous studies concentrated on reducing the energy consumption associated with the machine tool and cutting fluids. However, the investigations in this study show the significance of the embodied energy of cutting tool. New cooling/lubrication methods such as WS2-oil suspension can reduce the energy footprint of machining through extending tool life. Cutting tools are commonly replaced early before reaching their end of useful life to prevent damage to the workpiece, effectively wasting a portion of the embodied energy in cutting tools. A deep learning method is trained and validated to identify when a tool change is required based on sensor signals from a wireless sensory toolholder. The results indicated that the network is capable of classifying over 90% of the tools correctly. This enables capitalising on the entirety of a tool’s useful life before replacing the tool and thus reducing the overall energy footprint of machining processes.
Źródło:
Journal of Machine Engineering; 2023, 23, 2; 16--40
1895-7595
2391-8071
Pojawia się w:
Journal of Machine Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Analysis of selected non-destructive methods for diagnosis in new and old buildings
Analiza wybranych metod nieniszczących diagnostyki w nowych i starych budynkach
Autorzy:
Schabowicz, Krzysztof
Menéndez Orellana, A. E.
Andrianos, N.
Powiązania:
https://bibliotekanauki.pl/articles/2200294.pdf
Data publikacji:
2022
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
konstrukcje betonowe
badania nieniszczące
NDT
konserwacja oparta na stanie technicznym
CBM
monitorowanie strukturalne
SHM
concrete structures
non-destructive testing
structural health monitoring
condition based maintenance
Opis:
Non-destructive Testing (NDT) techniques are, as of today, a fundamental tool in civil engineering. Based on a thorough literature review, the scope of this article comprises a comprehensive assessment of the state-of-the-art of a series of NDT methods utilized specifically for concrete diagnosis, grouped into seven categories according to their main aim. Moreover, a summary of references to publications containing descriptions, applications, and case studies of each one is also presented.
Techniki badań nieniszczących (NDT) są na dzień dzisiejszy podstawowym narzędziem stosowanym w inżynierii lądowej. Na podstawie szczegółowego przeglądu literatury przedstawiono w artykule kompleksową ocenę stanu technicznego budynku z zastosowaniem szeregu metod NDT. Ponadto przedstawiono odniesienia do publikacji zawierających opisy, zastosowania i studia przypadków każdej z metod NDT.
Źródło:
Badania Nieniszczące i Diagnostyka; 2022, 1-4; 63--70
2451-4462
2543-7755
Pojawia się w:
Badania Nieniszczące i Diagnostyka
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Intelligent cyber-physical monitoring and control of I4.0 machining systems – an overview and future perspectives
Autorzy:
Hassan, Mahmoud
Sadek, Ahmad
Attia, M. Helmi
Powiązania:
https://bibliotekanauki.pl/articles/2052195.pdf
Data publikacji:
2022
Wydawca:
Wrocławska Rada Federacji Stowarzyszeń Naukowo-Technicznych
Tematy:
machining process
artificial intelligence
modelling
optimisation
tool condition monitoring
Opis:
Rapid evolution in sensing, data analysis, and industrial internet of things technologies had enabled the manufacturing of advanced smart tooling. This has been fused with effective digital inter-connectivity and integrated process control intelligence to form the industry I4.0 platform. This keynote paper presents the recent advances in smart tooling and intelligent control techniques for machining processes. Self-powered wireless sensing nodes have been utilized for non-intrusive measurement of process-born phenomena near the cutting zone, as well as tool wear and tool failure, to increase confidence in the process and tool condition monitoring accuracy. Cyber-physical adaptive control approaches have been developed to optimize the cycle time and cost while eliminating machined part defects. Novel artificial intelligence AI-based signal processing and modeling approaches were developed to guarantee the generalization and practicality of these systems. The paper concludes with the outlook for future work needed for seamless implementation of these developments in industry.
Źródło:
Journal of Machine Engineering; 2022, 22, 1; 5-24
1895-7595
2391-8071
Pojawia się w:
Journal of Machine Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Primary testing of an instrumented tool holder for brush deburring of milled workpieces
Autorzy:
Ramsauer, Christoph
Oswald, Ralf
Schörghofer, Paul
Leder, Norbert
Schmitz, Tony
Bleicher, Friedrich
Powiązania:
https://bibliotekanauki.pl/articles/2086281.pdf
Data publikacji:
2022
Wydawca:
Wrocławska Rada Federacji Stowarzyszeń Naukowo-Technicznych
Tematy:
condition monitoring
deburring
feature generation
Opis:
Brush deburring requires consistent contact pressure between brush and workpiece. Automating adjustments to control contact pressure has proven difficult, as the sensors available in machine tools are usually not suitable to observe the small amplitude signals caused by this low force process. Additionally, both the power consumption and the vibration signal caused by the process strongly depend on the workpiece surface features. This paper describes a test setup using an instrumented tool holder and presents the corresponding measurement results, aiming to quantify the axial feed of the brush. It also discusses the interpretation of different signal components and provides an outlook on the utilization of the data for tool wear estimation.
Źródło:
Journal of Machine Engineering; 2022, 22, 2; 99--107
1895-7595
2391-8071
Pojawia się w:
Journal of Machine Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Stator winding fault detection of permanent magnet synchronous motors based on the bispectrum analysis
Autorzy:
Pietrzak, Przemysław
Wolkiewicz, Marcin
Powiązania:
https://bibliotekanauki.pl/articles/2173641.pdf
Data publikacji:
2022
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
fault diagnosis
condition monitoring
inter-turn short circuits
permanent magnet synchronous motor
bispectrum
fast Fourier transform
błędna diagnoza
monitorowanie stanu
zwarcia międzyzwojowe
silnik synchroniczny z magnesami trwałymi
bispektrum
szybka transformata Fouriera
Opis:
The popularity of high-efficiency permanent magnet synchronous motors in drive systems has continued to grow in recent years. Therefore, also the detection of their faults is becoming a very important issue. The most common fault of this type of motor is the stator winding fault. Due to the destructive character of this failure, it is necessary to use fault diagnostic methods that facilitate damage detection in its early stages. This paper presents the effectiveness of spectral and bispectrum analysis application for the detection of stator winding faults in permanent magnet synchronous motors. The analyzed diagnostic signals are stator phase current, stator phase current envelope, and stator phase current space vector module. The proposed solution is experimentally verified during various motor operating conditions. The object of the experimental verification was a 2.5 kW permanent magnet synchronous motor, the construction of which was specially prepared to facilitate inter-turn short circuits modelling. The application of bispectrum analysis discussed so far in the literature has been limited to vibration signals and detecting mechanical damages. There are no papers in the field of motor diagnostic dealing with the bispectrum analysis for stator winding fault detection, especially based on stator phase current signal.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2022, 70, 2; art. no. e140556
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies