The exponential development of technologies for the acquisition, collection, and processing of data from real-world objects is creating new perspectives in the field of machine maintenance. The Industrial Internet of Things is the source of a huge collection of measurement data. The performance of classification or regression algorithms needs to take into account the random nature of the process being modelled and any incomplete observability, especially in terms of failure states. The article highlights the practical possibilities of using generative artificial intelligence and deep machine learning systems to create synthetic measurement observations in monitoring the vibrations of rotating machinery to improve unbalanced databases. Variational AutoencoderVAE generative models with latent variables in the form of high-level input features of time-frequency spectra were studied. The mapping and generation algorithm was optimised and its effectiveness was tested in the practical solution of the task of diagnosing the three operating states of a demonstration gearbox.
Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies
Informacja
SZANOWNI CZYTELNICY!
UPRZEJMIE INFORMUJEMY, ŻE BIBLIOTEKA FUNKCJONUJE W NASTĘPUJĄCYCH GODZINACH:
Wypożyczalnia i Czytelnia Główna: poniedziałek – piątek od 9.00 do 19.00