Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Clustering based" wg kryterium: Temat


Wyświetlanie 1-25 z 25
Tytuł:
Comparative analysis of proactive & reactive protocols for cluster based routing algorithms in WSNs
Autorzy:
Mohammed, Ibrahim Yahia
Powiązania:
https://bibliotekanauki.pl/articles/1062952.pdf
Data publikacji:
2019
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
Clustering based
Energy
LEACH
Proactive
Reactive
Routing protocol
Sensors
TEEN
WSNs
Opis:
Wireless Sensor Networks (WSNs) are networks that consist of sensors which are randomly deployed in inaccessible area to gathering data and transfer it to user or base station. The most important matters considered in sensor networks are efficient utilization of energy, network lifetime, and environmental conditions changes. To provide the communication facilities within the network a routing protocol is used. There are many techniques used to route data in sensor networks, clustering based is one of most common techniques used, cluster based routing protocols can be classified to proactive and reactive protocol depending on how source finds a route to destination. This paper is aim to study and compare the two mechanisms in cluster based routing by discuss different characteristics in each mechanism, and also analyzed the performance of two mechanisms by take two exemplar protocols LEACH and TEEN from proactive and reactive mechanism respectively in order to compare the performance in same scenario and simulation parameters.
Źródło:
World Scientific News; 2019, 124, 2; 131-142
2392-2192
Pojawia się w:
World Scientific News
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A novel grid-based clustering algorithm
Autorzy:
Starczewski, Artur
Scherer, Magdalena M.
Książek, Wojciech
Dębski, Maciej
Wang, Lipo
Powiązania:
https://bibliotekanauki.pl/articles/2031101.pdf
Data publikacji:
2021
Wydawca:
Społeczna Akademia Nauk w Łodzi. Polskie Towarzystwo Sieci Neuronowych
Tematy:
data mining
grid-based clustering
grid structure
Opis:
Data clustering is an important method used to discover naturally occurring structures in datasets. One of the most popular approaches is the grid-based concept of clustering algorithms. This kind of method is characterized by a fast processing time and it can also discover clusters of arbitrary shapes in datasets. These properties allow these methods to be used in many different applications. Researchers have created many versions of the clustering method using the grid-based approach. However, the key issue is the right choice of the number of grid cells. This paper proposes a novel grid-based algorithm which uses a method for an automatic determining of the number of grid cells. This method is based on the kdist function which computes the distance between each element of a dataset and its kth nearest neighbor. Experimental results have been obtained for several different datasets and they confirm a very good performance of the newly proposed method.
Źródło:
Journal of Artificial Intelligence and Soft Computing Research; 2021, 11, 4; 319-330
2083-2567
2449-6499
Pojawia się w:
Journal of Artificial Intelligence and Soft Computing Research
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The comparison of model-based clustering with heuristic clustering methods
Autorzy:
Witek, Ewa
Powiązania:
https://bibliotekanauki.pl/articles/657968.pdf
Data publikacji:
2011
Wydawca:
Uniwersytet Łódzki. Wydawnictwo Uniwersytetu Łódzkiego
Tematy:
heurisic methods of clustering
probability models
model-based clustering
Opis:
Najczęściej w różnych analizach statystycznych wykorzystywane są klasyczne metody analizy skupień, opierające się na podejściu heurystycznym. W referacie zaprezentowane zostanie podejście modelowe w analizie skupień (model-based clustering), bazujące na modelach probabilistycznych. W części empirycznej referatu podejście to zostanie porównane z klasycznymi metodami taksonomicznymi (metodami hierarchicznymi oraz metodami iteracyjno- aglomeracyjnymi).
Źródło:
Acta Universitatis Lodziensis. Folia Oeconomica; 2011, 255
0208-6018
2353-7663
Pojawia się w:
Acta Universitatis Lodziensis. Folia Oeconomica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Teoria reakcji na pozycję w podejściu modelowym w takso- nomii
Item response theory in model-based clustering
Autorzy:
Genge, Ewa
Powiązania:
https://bibliotekanauki.pl/articles/425062.pdf
Data publikacji:
2016
Wydawca:
Wydawnictwo Uniwersytetu Ekonomicznego we Wrocławiu
Tematy:
item response theory
latent class analysis
model-based clustering
Opis:
Item response theory is considered to be one of the two trends in methodological assessment of the reliability scale. In turn, latent class models can be viewed as a special case of model-based clustering, for heterogenous multivariate discrete data. We used the approach combining item response theory and latent class models to find groups of Polish households’ with similar saving ability levels. We analyzed data collected as part of the Polish Social Diagnosis using MultiLCIRT package of R.
Źródło:
Econometrics. Ekonometria. Advances in Applied Data Analytics; 2016, 1 (51); 9-19
1507-3866
Pojawia się w:
Econometrics. Ekonometria. Advances in Applied Data Analytics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Cloud computing migration barriers and advantages in manufacturing – an analysis of ambiguity and dependences in the assessment criteria
Bariery i korzyści migracji do chmury obliczeniowej w przedsiębiorstwach przemysłowych – analiza niejednoznaczności i związków między kryteriami oceny
Autorzy:
Bartkiewicz, Witold
Gontar, Zbigniew
Powiązania:
https://bibliotekanauki.pl/articles/425213.pdf
Data publikacji:
2018
Wydawca:
Wydawnictwo Uniwersytetu Ekonomicznego we Wrocławiu
Tematy:
cloud computing
association mining
similarity based semantic clustering
Opis:
There is still many misunderstandings associated with the assessment of the barriers encountered in the process of IT solutions migration to the computational cloud and the benefits to be expected. The purpose of this paper is to organize the criteria used in this field, to analyze the dependencies between them. This will allow us to better understand the problem of migration to the cloud and to improve the decision-making processes related to it. A comprehensive survey was carried out, covering about 400 manufacturing enterprises in Poland using cloud-based IT solutions in various areas. The elements of the study were questions about the barriers and benefits encountered in this process. The paper analyzes the relationships between the obtained categories using diverse data mining methods: association rules mining and hierarchical agglomerative clustering. The obtained results allow to identify the conceptual structure and build a model of relationships inside the problem.
Źródło:
Econometrics. Ekonometria. Advances in Applied Data Analytics; 2018, 22, 3; 41-54
1507-3866
Pojawia się w:
Econometrics. Ekonometria. Advances in Applied Data Analytics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Poczucie śląskości wśród Ślązaków – analiza empiryczna z wykorzystaniem modeli klas ukrytych
A sense of being Silesian – an empirical analysis with the use of latent class models
Autorzy:
Genge, Ewa
Powiązania:
https://bibliotekanauki.pl/articles/425295.pdf
Data publikacji:
2013
Wydawca:
Wydawnictwo Uniwersytetu Ekonomicznego we Wrocławiu
Tematy:
latent class analysis
mixture model
model-based clustering
categorical data
Opis:
The paper focuses on latent class models and their application for quantitative data. Latent class modeling is one of multivariate analysis techniques of the contingency table and can be viewed as a special case of model-based clustering, for multivariate discrete data. It is assumed that each observation comes from one of the numbers of subpopulations, with its own probability distribution. We used latent class analysis for grouping and detecting homogeneity of Silesian people using poLCA package of R. We analyzed data collected by the Department of Social Pedagogy, University of Silesia in Katowice.
Źródło:
Econometrics. Ekonometria. Advances in Applied Data Analytics; 2013, 4(42); 48-59
1507-3866
Pojawia się w:
Econometrics. Ekonometria. Advances in Applied Data Analytics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Teledetekcyjne wykorzystanie metody grupowania obiektów w oparciu o analizę gęstości
Using object grouping method based on density analysis in remote sensing
Autorzy:
Wyczałek, I.
Powiązania:
https://bibliotekanauki.pl/articles/341393.pdf
Data publikacji:
2005
Wydawca:
Uniwersytet Przyrodniczy we Wrocławiu
Tematy:
teledetekcja
segmentacja obiektowa
grupowanie gęstościowe
remote sensing
object segmentation
density-based clustering
Opis:
Klasyczne podejście do klasyfikacji obiektów na obrazach teledetekcyjnych, zakładające rozpoznawanie szczegółów terenowych pogrupowanych w kilka kategorii tematycznych, reprezentowanych przez cechy radiometryczne kilkukanałowego obrazu rastrowego, nadal wymaga coraz bardziej zaawansowanych metod podnoszenia skuteczności. Spośród współcześnie wprowadzanych rozwiązań na szczególną uwagę zasługują metody określane mianem obiektowych, które bazują na analizach fragmentów obszaru mapy bitowej, pogrupowanych według określonych kryteriów homologiczności. Segmentację obrazu można uzyskać różnymi metodami, które rozwijane są w licznych dziedzinach zastosowań informatyki. W interpretacji obrazów teledetekcyjnych opracowano rozwiązania dostosowane do specyfiki tychże obrazów. W niniejszej pracy podjęto temat takiego szczególnego wykorzystania techniki grupowania obiektów spełniających określone kryteria dokładnościowe. Scharakteryzowano metodę gęstościową analiz baz danych i jej modyfikację dostosowaną do analiz obrazów rastrowych, a następnie podano proponowany sposób dalszego rozwoju metody z wykorzystaniem dostępnej informacji wektorowej. Wywód zilustrowano za pomocą uproszczonego modelu obrazu teledetekcyjnego.
Typical approach to classification of objects on remote sensing images, which assume detection of terrain details being grouped into several thematic categories, represented by radiometric properties of the multispectral raster image, still needs more and more sophisticated methods of increasing efficiency. Among currently used solutions, on special attention claimed methods stated as the object-oriented, which are based on analyses of parts of the bitmap, grouped according to criteria of homogeneity. It is possible to carry out the image segmentation using various methods, which are developed within couple of informatics' sciences. In interpretation of remote sensing images there were elaborated approaches adapted to specific of those types of images. Such special use of grouping technique of objects fulfilled the particular accuracy criteria were investigated here. There were described the density-based clustering method of large databases and their implementation adapted to raster image analyses, and then, the possible solution using accessible vector information was suggested. The text is illustrated using the simplified model of remote sensing image.
Źródło:
Acta Scientiarum Polonorum. Geodesia et Descriptio Terrarum; 2005, 4, 1; 29-39
1644-0668
Pojawia się w:
Acta Scientiarum Polonorum. Geodesia et Descriptio Terrarum
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
An MST cluster analysis method under hesitant fuzzy environment
Autorzy:
Zhang, X.
Xu, Z.
Powiązania:
https://bibliotekanauki.pl/articles/205680.pdf
Data publikacji:
2012
Wydawca:
Polska Akademia Nauk. Instytut Badań Systemowych PAN
Tematy:
hesitant fuzzy set
minimal spanning tree
graph theory-based clustering algorithm
hesitant fuzzy distance
Opis:
Hesitant fuzzy sets (HFSs) are useful means to describe and deal with uncertain data. In this article, a minimal spinning tree (MST) algorithm based clustering technique under hesitant fuzzy environment is proposed. We first introduce the concepts of graph, MST, HFS, and hesitant fuzzy distance. Then, we present a hesitant fuzzy MST clustering algorithm to perform clustering analysis of HFSs via some hesitant fuzzy distances, and finally illustrate the effectiveness of our algorithm through two numerical examples.
Źródło:
Control and Cybernetics; 2012, 41, 3; 645-666
0324-8569
Pojawia się w:
Control and Cybernetics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
On an Improvement of the Model-Based Clustering Method
O pewnej modyfikacji w metodzie taksonomii opartej na modelach mieszanych
Autorzy:
Witek, Ewa
Powiązania:
https://bibliotekanauki.pl/articles/906293.pdf
Data publikacji:
2009
Wydawca:
Uniwersytet Łódzki. Wydawnictwo Uniwersytetu Łódzkiego
Tematy:
Model-based clustering (MBC)
Gaussian mixture models
EM algorithm
MLE
MAP
BIC
conjugate prior
Opis:
W artykule przedstawiona została modyfikacja metody taksonomii opartej na modelach mieszanych, w przypadku gdy niemożliwym staje się oszacowanie parametrów modelu za pomocą algorytmu EM. Gdy liczba obiektów przypisanych do klasy jest mniejsza niż liczba zmiennych opisujących te obiekty, niemożliwym staje się oszacowanie parametrów modelu. By uniknąć tej sytuacji estymatory największej wiarygodności zastępowane są estymatorami o największym prawdopodobieństwie a posteriori. Wybór modelu o najlepszej parametryzacji i stosownej liczbie klas dokonywany jest wówczas za pomocą zmodyfikowanej statystyki BIC.
An improvement o f the model-based clustering (MBC) method in the case when EM algorithm fails as a result o f singularities is the basic aim o f this paper. Replacement o f the maximum likelihood (MLE) estimator by a maximum a posteriori (MAP) estimator, also found by the EM algorithm is proposed. Models with different number o f components are compared using a modified version o f BIC, where the likelihood is evaluated at the MAP instead o f MLE. A highly dispersed proper conjugate prior is shown to avoid singularities, but when these are not present it gives similar results to the standard method o f MBC.
Źródło:
Acta Universitatis Lodziensis. Folia Oeconomica; 2009, 228
0208-6018
2353-7663
Pojawia się w:
Acta Universitatis Lodziensis. Folia Oeconomica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Semantic segmentation and PSO based method for segmenting liver and lesion from CT images
Autorzy:
Nayantara, Vaidehi P.
Surekha, Kamath
Manjunath, K.N.
Rajagopal, Kadavigere
Powiązania:
https://bibliotekanauki.pl/articles/2146955.pdf
Data publikacji:
2022
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
liver lesion segmentation
computed tomography
semantic segmentation
SegNet
particle swarm optimization-based clustering
Hounsfield Unit
Opis:
The liver is a vital organ of the human body and hepatic cancer is one of the major causes of cancer deaths. Early and rapid diagnosis can reduce the mortality rate. It can be achieved through computerized cancer diagnosis and surgery planning systems. Segmentation plays a major role in these systems. This work evaluated the efficacy of the SegNet model in liver and particle swarm optimization-based clustering technique in liver lesion segmentation. Over 2400 CT images were used for training the deep learning network and ten CT datasets for validating the algorithm. The segmentation results were satisfactory. The values for Dice Coefficient and volumetric overlap error achieved were 0.940 ± 0.022 and 0.112 ± 0.038, respectively for liver and the results for lesion delineation were 0.4629 ± 0.287 and 0.6986 ± 0.203, respectively. The proposed method is effective for liver segmentation. However, lesion segmentation needs to be further improved for better accuracy.
Źródło:
International Journal of Electronics and Telecommunications; 2022, 68, 3; 635--640
2300-1933
Pojawia się w:
International Journal of Electronics and Telecommunications
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Wild Image Retrieval with HAAR Features and Hybrid DBSCAN Clustering For 3D Cultural Artefact Landmarks Reconstruction
Autorzy:
Pitchandi, Perumal
Powiązania:
https://bibliotekanauki.pl/articles/2201730.pdf
Data publikacji:
2022
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
outliers removal
culturalartefact objects
3D reconstruction
particle swarm optimization
PSO
spatial clustering
density based spatial clustering
noise clustering algorithm
Opis:
In this digital age large amounts of information, images and videos can be found in the web repositories which accumulate this information. These repositories include personal, historic, cultural, and business event images. Image mining is a limited field in research where most techniques look at processing images instead of mining. Very limited tools are found for mining these images, specifically 3D (Three Dimensional) images. Open source image datasets are not structured making it difficult for query based retrievals. Techniques extracting visual features from these datasets result in low precision values as images lack proper descriptions or numerous samples exist for the same image or images are in 3D. This work proposes an extraction scheme for retrieving cultural artefact based on voxel descriptors. Image anomalies are eliminated with a new clustering technique and the 3D images are used for reconstructing cultural artefact objects. Corresponding cultural 3D images are grouped for a 3D reconstruction engine’s optimized performance. Spatial clustering techniques based on density like PVDBSCAN (Particle Varied Density Based Spatial Clustering of Applications with Noise) eliminate image outliers. Hence, PVDBSCAN is selected in this work for its capability to handle a variety of outliers. Clustering based on Information theory is also used in this work to identify cultural object’s image views which are then reconstructed using 3D motions. The proposed scheme is benchmarked with DBSCAN (Density-Based Spatial Clustering of Applications with Noise) to prove the proposed scheme’s efficiency. Evaluation on a dataset of about 31,000 cultural heritage images being retrieved from internet collections with many outliers indicate the robustness and cost effectiveness of the proposed method towards a reliable and just-in-time 3D reconstruction than existing state-of-the-art techniques.
Źródło:
Advances in Science and Technology. Research Journal; 2022, 16, 3; 269--281
2299-8624
Pojawia się w:
Advances in Science and Technology. Research Journal
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Ant-based extraction of rules in simple decision systems over ontological graphs
Autorzy:
Pancerz, K.
Lewicki, A.
Tadeusiewicz, R.
Powiązania:
https://bibliotekanauki.pl/articles/330276.pdf
Data publikacji:
2015
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
ant based clustering
decision system
DRSA
ontological graphs
rule extraction
system decyzyjny
grafy ontologiczne
ekstrakcja reguł
Opis:
In the paper, the problem of extraction of complex decision rules in simple decision systems over ontological graphs is considered. The extracted rules are consistent with the dominance principle similar to that applied in the dominance-based rough set approach (DRSA). In our study, we propose to use a heuristic algorithm, utilizing the ant-based clustering approach, searching the semantic spaces of concepts presented by means of ontological graphs. Concepts included in the semantic spaces are values of attributes describing objects in simple decision systems.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2015, 25, 2; 377-387
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Estimation of parameters of Gaussian mixture models by a hybrid method combining a self-adaptive differential evolution with the EM algorithm
Estymacja parametrów modeli mieszanin rozkładów normalnych przy pomocy metody hybrydowej łączącej samoadaptacyjną ewolucję różnicową z algorytmem EM
Autorzy:
Kwedlo, W.
Powiązania:
https://bibliotekanauki.pl/articles/88410.pdf
Data publikacji:
2014
Wydawca:
Politechnika Białostocka. Oficyna Wydawnicza Politechniki Białostockiej
Tematy:
mieszaniny rozkładów normalnych
ewolucja różnicowa
algorytm EM
grupowanie danych
Gaussian mixture models
differential evolution
expectation maximization
model-based clustering
Opis:
In the paper the problem of learning of Gaussian mixture models (GMMs) is considered. A new approach based on hybridization of a self-adaptive version of differential evolution (DE) with the classical EM algorithm is described. In this approach, called DEEM, the EM algorithm is run until convergence to fine-tune each solution obtained by the mutation and crossover operators of DE. To avoid the problem with parameter representation and infeasible solutions we use a method in which the covariance matrices are encoded using their Cholesky factorizations. In a simulation study GMMs were used to cluster synthetic datasets differing by a degree of separation between clusters. The results of experiments indicate that DE-EM outperforms the standard multiple restart expectation-maximization algorithm (MREM). For datasets with high number of features it also outperforms the state of-the-art random swap EM (RSEM).
W pracy poruszono problem uczenia modeli mieszanin rozkładów normalnych. Zaproponowano nowe podejście, nazwane DE-EM, oparte na hybrydyzacji samoadaptacyjnego algorytmu ewolucji różnicowej i klasycznego algorytmu EM. W nowej metodzie rozwiązanie otrzymane jako wynik operatorów mutacji i krzyżowania jest poddawane optymalizacji lokalnej, prowadzonej aż do momentu uzyskania zbieżności, przez algorytm EM. Aby uniknąć problemu z reprezentacją macierzy kowariancji i niedopuszczalności rozwiązań użyto metody, w której macierze kowariancji są kodowane przy pomocy dekompozycji Cholesky’ego. W badaniach symulacyjnych modele mieszanin rozkładów normalnych zastosowano do grupowania danych syntetycznych. Wyniki eksperymentów wskazują, że metoda DE-EM osiąga lepsze wyniki niż standardowa technika wielokrotnego startu algorytmu ˙ EM. Dla zbiorów danych z dużą liczbą cech, metoda osiąga lepsze wyniki niż technika losowej wymiany rozwiązań połączona z algorytmem EM.
Źródło:
Advances in Computer Science Research; 2014, 11; 109-123
2300-715X
Pojawia się w:
Advances in Computer Science Research
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Ant-based clustering for flow graph mining
Autorzy:
Lewicki, Arkadiusz
Pancerz, Krzysztof
Powiązania:
https://bibliotekanauki.pl/articles/330782.pdf
Data publikacji:
2020
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
possibly certain sequences
flow graph
rough set
fuzzy set
ant based clustering
graf przepływu danych
zbiór przybliżony
zbiór rozmyty
Opis:
The paper is devoted to the problem of mining graph data. The goal of this process is to discover possibly certain sequences appearing in data. Both rough set flow graphs and fuzzy flow graphs are used to represent sequences of items originally arranged in tables representing information systems. Information systems are considered in the Pawlak sense, as knowledge representation systems. In the paper, an approach involving ant based clustering is proposed. We show that ant based clustering can be used not only for building possible large groups of similar objects, but also to build larger structures (in our case, sequences) of objects to obtain or preserve the desired properties.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2020, 30, 3; 561-572
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
DSMK-means “density-based split-and-Merge K-means clustering algorithm
Autorzy:
Aldahdooh, R. T.
Ashour, W.
Powiązania:
https://bibliotekanauki.pl/articles/91719.pdf
Data publikacji:
2013
Wydawca:
Społeczna Akademia Nauk w Łodzi. Polskie Towarzystwo Sieci Neuronowych
Tematy:
clustering
K-means
Density-based Split
Merge K-means clustering Algorithm
DSMK-means
clustering algorithm
Opis:
Clustering is widely used to explore and understand large collections of data. K-means clustering method is one of the most popular approaches due to its ease of use and simplicity to implement. This paper introduces Density-based Split- and -Merge K-means clustering Algorithm (DSMK-means), which is developed to address stability problems of standard K-means clustering algorithm, and to improve the performance of clustering when dealing with datasets that contain clusters with different complex shapes and noise or outliers. Based on a set of many experiments, this paper concluded that developed algorithms “DSMK-means” are more capable of finding high accuracy results compared with other algorithms especially as they can process datasets containing clusters with different shapes, densities, or those with outliers and noise.
Źródło:
Journal of Artificial Intelligence and Soft Computing Research; 2013, 3, 1; 51-71
2083-2567
2449-6499
Pojawia się w:
Journal of Artificial Intelligence and Soft Computing Research
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Performance Evaluation of a Zone-based Three-level Heterogeneous Clustering Protocol for WSNs
Autorzy:
Rao, Sanapala Shanmukha
Shilpi
Kumar, Arvind
Powiązania:
https://bibliotekanauki.pl/articles/24200745.pdf
Data publikacji:
2023
Wydawca:
Instytut Łączności - Państwowy Instytut Badawczy
Tematy:
clustering
heterogeneous
network lifetime
stability period
zone-based WSN
Opis:
This paper proposes a zone-based three-level heterogeneous clustering protocol (ZB-TLHCP) for heterogeneous WSNs. In ZB-TLHCP, the sensor field/region is divided into zones where super, advance, and normal nodes are deployed uniformly and randomly. The performance of the proposed ZB-TLHCP system is compared with that of zonal-stable election protocol (Z-SEP), distributed energy efficient clustering (DEEC), and threshold-based DEEC (TDEEC) protocol by varying the number of super and advance nodes, their energy levels for the fixed sensor field, and the total number of nodes. Matlab simulation results revealed that the proposed ZB-TLHCP solution performed better than Z-SEP, DEEC, and TDEEC protocols, as it increased the instability period, prolonged the network's lifetime, and achieved higher throughput values.
Źródło:
Journal of Telecommunications and Information Technology; 2023, 3; 85--93
1509-4553
1899-8852
Pojawia się w:
Journal of Telecommunications and Information Technology
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A Study of Wireless Sensor Networks to Comprehend their Relevance to Different Applications
Autorzy:
Agarkhed, Jayashree
Dattatraya, Patil Yogita
Patil, Siddarama
Powiązania:
https://bibliotekanauki.pl/articles/308904.pdf
Data publikacji:
2020
Wydawca:
Instytut Łączności - Państwowy Instytut Badawczy
Tematy:
clustering
energy efficiency
multipath-based routing
wireless sensor network
Opis:
Wireless sensor networks (WSNs) have experienced enormous growth, both in terms of the technology used and their practical applications. In order to understand the features of WSNs that make the solution suitable for a specific purpose, one needs to be aware of the theoretical concepts behind and technological aspects of WSNs. In this paper, the significance of WSNs is illustrated, with a particular emphasis placed on their demands and on understanding researchrelated problems. A review of the literature available is presented as well. Detailed discussions concerning sensor node architecture, different types of sensors used and their relevance for various types of WSNs is presented, highlighting the need to achieve application-specific requirements without degrading service quality. Multipath and cluster-based routing protocols are compared in order to analyze QoS requirements they are capable of satisfying, and their suitability for different application areas is reviewed. This survey highlights the performance of different routing protocols, therefore providing guidelines enabling each of the routing techniques to be used, in an efficient manner, with factors such as specific network structure, protocol operation and routing path construction taken into consideration in order to achieve better performance.
Źródło:
Journal of Telecommunications and Information Technology; 2020, 2; 3-13
1509-4553
1899-8852
Pojawia się w:
Journal of Telecommunications and Information Technology
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Kernel K-Means clustering algorithm for identification of glaucoma in ophthalmology
Autorzy:
Stapor, K.
Bruckner, A.
Powiązania:
https://bibliotekanauki.pl/articles/333803.pdf
Data publikacji:
2005
Wydawca:
Uniwersytet Śląski. Wydział Informatyki i Nauki o Materiałach. Instytut Informatyki. Zakład Systemów Komputerowych
Tematy:
grupowanie
segmentacja obrazu
clustering
image segmentation
kernel-based learning
Opis:
This paper presents the improved version of the classification system for supporting glaucoma diagnosis in ophthalmology, proposed in [4]. In this paper we propose the new segmentation step based on the kernel K-Means clustering algorithm which enable for better classification performance.
Źródło:
Journal of Medical Informatics & Technologies; 2005, 9; 167-172
1642-6037
Pojawia się w:
Journal of Medical Informatics & Technologies
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Method for the Player Profiling in the Turn-based Computer Games
Autorzy:
Bilski, Piotr
Antoniuk, Izabella
Łabędzki, Rafał
Powiązania:
https://bibliotekanauki.pl/articles/27311938.pdf
Data publikacji:
2023
Wydawca:
Polska Akademia Nauk. Czasopisma i Monografie PAN
Tematy:
turn based games
player profiling
data clustering
automated classification
Opis:
The following paper presents the players profiling methodology applied to the turn-based computer game in the audience-driven system. The general scope are mobile games where the players compete against each other and are able to tackle challenges presented by the game engine. As the aim of the game producer is to make the gameplay as attractive as possible, the players should be paired in a way that makes their duel the most exciting. This requires the proper player profiling based on their previous games. The paper presents the general structure of the system, the method for extracting information about each duel and storing them in the data vector form and the method for classifying different players through the clustering or predefined category assignment. The obtained results show the applied method is suitable for the simulated data of the gameplay model and clustering of players may be used to effectively group them and pair for the duels.
Źródło:
International Journal of Electronics and Telecommunications; 2023, 69, 3; 461--468
2300-1933
Pojawia się w:
International Journal of Electronics and Telecommunications
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Accuracy of generalized context patterns in the context based sequential patterns mining
Autorzy:
Ziembiński, R. Z.
Powiązania:
https://bibliotekanauki.pl/articles/206061.pdf
Data publikacji:
2011
Wydawca:
Polska Akademia Nauk. Instytut Badań Systemowych PAN
Tematy:
knowledge discovery
context based sequential pattern mining
sequential context pattern clustering
pattern accuracy
Opis:
A context pattern is a frequent subsequence mined from the context database containing set of sequences. This kind of sequential patterns and all elements inside them are described by additional sets of context attributes e.g. continuous ones. The contexts describe circumstances of transactions and sources of sequential data. These patterns can be mined by an algorithm for the context based sequential pattern mining. However, this can create large sets of patterns because all contexts related to patterns are taken from the database. The goal of the generalization method is to reduce the context pattern set by introducing a more compact and descriptive kind of patterns. This is achieved by finding clusters of similar context patterns in the mined set and transforming them to a smaller set of generalized context patterns. This process has to retain as much as possible information from the mined context patterns. This paper introduces a definition of the generalized context pattern and the related algorithm. Results from the generalization may differ as depending on the algorithm design and settings. Hence, generalized patterns may reflect frequent information from the context database differently. Thus, an accuracy measure is also proposed to evaluate the generalized patterns. This measure is used in the experiments presented. The generalized context patterns are compared to patterns mined by the basic sequential patterns mining with prediscretization of context values.
Źródło:
Control and Cybernetics; 2011, 40, 3; 585-603
0324-8569
Pojawia się w:
Control and Cybernetics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A density-based method for the identification of disjoint and non-disjoint clusters with arbitrary and non-spherical shapes
Autorzy:
Ben Ncir, Chiheb-Eddine
Powiązania:
https://bibliotekanauki.pl/articles/2097971.pdf
Data publikacji:
2021
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
overlapping clustering
non-disjoint clusters
density-based methods
clusters with non-spherical shapes
Opis:
The ability of clustering methods to build both disjoint and non-disjoint partitionings of data has become an important issue in unsupervised learning. Although this problem has been studied during the last decades resulting in several proposed overlapping clustering methods in the literature, most of existing methods fail to look for clusters having arbitrary and non-spherical shapes. In addition, most of these existing methods require to pre-configure the number of clusters in prior, which is not a trivial task in real life application of clustering. To solve all these issues, we propose in this work a new density based overlapping clustering method, referred to as OC-DD, which is able to detect both disjoint and non-disjoint partitioning even when boundaries between clusters have complex separations with arbitrary forms and shapes. The proposed method is based on density and distances to detect highly dense regions and connected groups in data without the necessity to pre-configure the number of clusters. Experiments performed on artificial and real multi-labeled datasets have shown the effectiveness of the proposed method compared to the existing ones.
Źródło:
Computer Science; 2021, 22 (2); 169-190
1508-2806
2300-7036
Pojawia się w:
Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Extraction of Polish noun senses from large corpora by means of clustering
Autorzy:
Broda, B.
Piasecki, M.
Szpakowicz, S.
Powiązania:
https://bibliotekanauki.pl/articles/969804.pdf
Data publikacji:
2010
Wydawca:
Polska Akademia Nauk. Instytut Badań Systemowych PAN
Tematy:
corpus linguistics
semantic similarity
Polish nouns
word clustering
Clustering by Committee
co-occurrence retrieval models
rank weight function
Polish WordNet
WordNet-based synonymy test
document clustering
keywords extraction
Opis:
We investigate two methods of identifying noun senses, based on clustering of lemmas and of documents. We have adapted to Polish the well-known algorithm of Clustering by Committee, and tested it on very large Polish corpora. The evaluation by means of a WordNet-based synonymy test used Polish wordnet (plWordNet 1.0). Various clustering algorithms were analysed for the needs of extraction of document clusters as indicators of the senses of words which occur in them. The two approaches to wordsense identification have been compared, and conclusions drawn.
Źródło:
Control and Cybernetics; 2010, 39, 2; 401-420
0324-8569
Pojawia się w:
Control and Cybernetics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Analysis of data aggregation methods and related issues in Wireless Sensor Networks
Autorzy:
Nels, S. Ninisha
Singh, J. Amar Pratap
Powiązania:
https://bibliotekanauki.pl/articles/2050167.pdf
Data publikacji:
2020
Wydawca:
Polska Akademia Nauk. Instytut Badań Systemowych PAN
Tematy:
data aggregation
wireless sensor network
WSN
clustering
cluster head
CH
cluster-based data aggregation
Opis:
Data aggregation is the process aimed at reducing the transmission count of packets being transmitted in the framework of in-network data processing. It is the data transmission model that takes the information transmitted from different nodes and generates a single data packet after finding and eliminating the redundant packets. Accordingly, this process decreases the transmission count and makes it possible to consume less energy. The major issues in data aggregation mechanism are related to reduction of latency and to energy balancing. Moreover, it is very complex to resolve the issue of packet loss, which is the failure of one or more transmitted packets to arrive at their destination due to the bad and/or congested channel conditions. The present survey involves a collection of 50 research papers dealing with the data aggregation models in wireless sensor networks (WSN). Various data aggregation methods, like the cluster-based approach, structure-free method, tree-based approach, in-network methods, and energy based aggregation model are considered in this survey, regarding the application and the energy usage involved. On the basis of the survey, the issues and drawbacks faced by the respective methodologies are highlighted. In addition, the paper presents simple statistics of the studies considered with respect to the performance measures, simulation tools, publication year, and classification of methods. The future dimensions of the respective research are supposed to be based on the challenges identified in this survey.
Źródło:
Control and Cybernetics; 2020, 49, 4; 419-446
0324-8569
Pojawia się w:
Control and Cybernetics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A new approach for the clustering using pairs of prototypes
Autorzy:
Jezewski, M.
Czabanski, R.
Leski, J.
Horoba, K.
Powiązania:
https://bibliotekanauki.pl/articles/333693.pdf
Data publikacji:
2015
Wydawca:
Uniwersytet Śląski. Wydział Informatyki i Nauki o Materiałach. Instytut Informatyki. Zakład Systemów Komputerowych
Tematy:
fuzzy clustering
pairs of prototypes
fuzzy rule-based classification
grupowanie rozmyte
pary prototypów
rozmyta klasyfikacja oparta na regułach
Opis:
In the presented work two variants of the fuzzy clustering approach dedicated for determining the antecedents of the rules of the fuzzy rule-based classifier were presented. The main idea consists in adding additional prototypes (’prototypes in between’) to the ones previously obtained using the fuzzy c-means method (ordinary prototypes). The ’prototypes in between’ are determined using pairs of the ordinary prototypes, and the algorithm based on distances and densities finding such pairs was proposed. The classification accuracy obtained applying the presented clustering approaches was verified using six benchmark datasets and compared with two reference methods.
Źródło:
Journal of Medical Informatics & Technologies; 2015, 24; 113-121
1642-6037
Pojawia się w:
Journal of Medical Informatics & Technologies
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Novel visual object descriptor using surf and clustering algorithms
Autorzy:
Grycuk, R.
Powiązania:
https://bibliotekanauki.pl/articles/122762.pdf
Data publikacji:
2016
Wydawca:
Politechnika Częstochowska. Wydawnictwo Politechniki Częstochowskiej
Tematy:
k-means
mean shift
clustering
image description
SURF
keypoints
content-based image retrieval (CBIR)
opis obrazu
algorytmy grupowania
detekcja punktów kluczowych
Opis:
In this paper we propose a method for object description based on two wellknown clustering algorithms (k-means and mean shift) and the SURF method for keypoints detection. We also perform a comparison of these clustering methods in object description area. Both of these algorithms require one input parameter; k-means (k, number of objects) and mean shift (h, window). Our approach is suitable for images with a non-homogeneous background thus, the algorithm can be used not only on trivial images. In the future we will try to remove non-important keypoints detected by the SURF algorithm. Our method is a part of a larger CBIR system and it is used as a preprocessing stage.
Źródło:
Journal of Applied Mathematics and Computational Mechanics; 2016, 15, 3; 37-46
2299-9965
Pojawia się w:
Journal of Applied Mathematics and Computational Mechanics
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-25 z 25

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies