Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Cluster ensemble" wg kryterium: Temat


Wyświetlanie 1-7 z 7
Tytuł:
Comparison of Accuracy of Affinity Propagation Method and Cluster Ensembles Based on Co-Occurrence Matrix
Porównanie dokładności taksonomicznej metody propagacji podobieństwa oraz zagregowanych algorytmów taksonomicznych opartych na idei macierzy współwystąpień
Autorzy:
Rozmus, Dorota
Powiązania:
https://bibliotekanauki.pl/articles/904521.pdf
Data publikacji:
2013
Wydawca:
Uniwersytet Łódzki. Wydawnictwo Uniwersytetu Łódzkiego
Tematy:
clustering
accuracy
affinity propagation
cluster ensemble
Opis:
High accuracy of results is a very important task in any grouping problem (clustering). It determines effectiveness of the decisions based on them. Therefore in the literature there are proposed methods and solutions whose main aim is to give more accurate results than traditional clustering algorithms (e.g. k-means or hierarchical methods). Examples of such solutions can be cluster ensembles or affinity propagation method. Here, we carry out an experimental study to compare accuracy of those two approaches.
Stosując metody taksonomiczne w jakimkolwiek zagadnieniu klasyfikacji ważną kwestią jest zapewnienie wysokiej poprawności wyników grupowania. Od niej bowiem zależeć będzie skuteczność wszelkich decyzji podjętych na ich podstawie. Stąd też w literaturze wciąż proponowane są nowe rozwiązania, które mają przynieść poprawę dokładności grupowania w stosunku do tradycyjnych metod (np. k-średnich, metod hierarchicznych). Przykładem mogą tu być metody polegające na zastosowaniu podejścia zagregowanego, czyli łączenia wyników uzyskanych w wyniku wielokrotnego grupowania (ang. cluster ensemble) oraz taksonomiczna metoda propagacji podobieństwa (ang. affinity propagation clustering). Głównym celem tego artykułu jest porównanie dokładności taksonomicznej metody propagacji podobieństwa zaproponowana przez Frey i Duecka (2007) oraz zagregowanych algorytmów taksonomicznych opartych idei macierzy współwystąpień (Fred, Jain 2002).
Źródło:
Acta Universitatis Lodziensis. Folia Oeconomica; 2013, 286
0208-6018
2353-7663
Pojawia się w:
Acta Universitatis Lodziensis. Folia Oeconomica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Comparison of stability of algorithms in classical and ensemble approach in taxonomy
Autorzy:
Rozmus, Dorota
Powiązania:
https://bibliotekanauki.pl/articles/657946.pdf
Data publikacji:
2011
Wydawca:
Uniwersytet Łódzki. Wydawnictwo Uniwersytetu Łódzkiego
Tematy:
Cluster analysis
Cluster ensemble
stability
accuracy
Opis:
Podejście wielomodelowe dotychczas z dużym powodzeniem stosowane było w dyskryminacji w celu podniesienia dokładności klasyfikacji. W ostatnich latach analogiczne propozycje pojawiły się w taksonomii, aby zapewnić większą poprawność i stabilność wyników grupowania Liczne badania wykazały, że agregacja różniących się między sobą wyników wielokrotnego grupowania, pozwala na poprawę dokładności klasyfikacji. Stabilność algorytmu taksonomicznego w odniesieniu do niewielkich zmian w zbiorze danych, czy też parametrów algorytmu jest pożądaną cechą algorytmu. Z drugiej jednak strony, podejście wielomodelowe czerpie korzyści ze zróżnicowanych klasyfikacji składowych, których połączenie przynosi bardziej dokładne i stabilne rozwiązanie niż pojedynczy algorytm. Głównym punktem zainteresowania tego badania była stabilność w podejściu zagregowanym w taksonomii. Przeprowadzone badania empiryczne pokazały, że podejście zagregowane daje bardziej stabilne rezultaty niż pojedyncze algorytmy taksonomiczne oraz, że często wyższa stabilność idzie w parze z wyższą dokładnością klasyfikacji w podejściu zagregowanym.
Źródło:
Acta Universitatis Lodziensis. Folia Oeconomica; 2011, 255
0208-6018
2353-7663
Pojawia się w:
Acta Universitatis Lodziensis. Folia Oeconomica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Comparison of Stability of Classical Taxonomy Bagging Metod with Bagging Based on Co-Occurence Data
Porównanie stabilności klasycznej taksonomicznej metody bagging z metodą bagging opartą na macierzy współwystąpień
Autorzy:
Rozmus, Dorota
Powiązania:
https://bibliotekanauki.pl/articles/906849.pdf
Data publikacji:
2012
Wydawca:
Uniwersytet Łódzki. Wydawnictwo Uniwersytetu Łódzkiego
Tematy:
Cluster analysis
Cluster ensemble
Stability
Bagging in taxonomy
Co-occurrence matrix.
Opis:
Ensemble approach has been successfully applied in the context of supervised learning to increase the accuracy and stability of classification. Recently, analogous techniques for cluster analysis have been suggested in order to increase classification accuracy, robustness and stability of the clustering solutions. Research has proved that, by combining a collection of different clusterings, an improved solution can be obtained. The stability of a clustering algorithm with respect to small perturbations of data (e.g., data subsampling or small variations in the feature values) or the parameters of the algorithm (e.g., random initialization) is a desirable quality of the algorithm. On the other hand, ensembles benefit from diverse clusterers. Although built upon unstable components, the ensemble is expected to be more accurate and robust than the individual clustering method. Here, we look at the stability of the ensemble methods based on bagging idea and co-occurrence matrix. This paper carries out an experimental study to compare stability of bagging method used to the classical data set with bagging based on co-occurrence matrix.
Źródło:
Acta Universitatis Lodziensis. Folia Oeconomica; 2012, 269
0208-6018
2353-7663
Pojawia się w:
Acta Universitatis Lodziensis. Folia Oeconomica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Comparison of the Accuracy of the Probabilistic Distance Clustering Method and Cluster Ensembles
Porównanie dokładności metody odległości probabilistycznej i podejścia zagregowanego w taksonomii
Autorzy:
Rozmus, Dorota
Powiązania:
https://bibliotekanauki.pl/articles/657880.pdf
Data publikacji:
2016
Wydawca:
Uniwersytet Łódzki. Wydawnictwo Uniwersytetu Łódzkiego
Tematy:
grupowanie
dokładność
metoda odległości probabilistycznej
podejście zagregowane w taksonomii
clustering
accuracy
distance clustering method
cluster ensemble
Opis:
Stosowanie metod taksonomicznych w jakimkolwiek zagadnieniu grupowania wymaga jednocześnie zapewnienia wysokiej dokładności wyników podziału. Ona bowiem warunkuje skuteczność wszelkich decyzji podjętych na podstawie uzyskanych rezultatów. Dlatego też w literaturze wciąż proponowane są nowe rozwiązania, których zadaniem jest poprawa dokładności grupowania w stosunku do tradycyjnie stosowanych metod (np. k-średnich, hierarchicznych). Przykładami mogą tu być metody polegające na zastosowaniu podejścia zagregowanego (Leisch 1999; Dudoit, Fridlyand 2003; Hornik 2006; Fred, Jain 2002), czy niedawno zaproponowana metoda odległości probabilistycznej (Ben-Israel, Iyigun 2008).Głównym celem artykułu jest porównanie dokładności omawianej metody z dokładnością podejścia zagregowanego w taksonomii.
High accuracy of results is a very important aspect in any clustering problem t determines the effectiveness of decisions based on them. Therefore, literature proposes methods and solutions that aim to give more accurate and stable results than traditional clustering algorithms (e.g. k-means or hierarchical methods). Cluster ensembles (Leisch 1999; Dudoit, Fridlyand 2003; Hornik 2006; Fred, Jain 2002) or the distance clustering method (Ben-Israel, Iyigun 2008) are the examples of such solutions. Here, we carry out an experimental study to compare the accuracy of these two approaches.
Źródło:
Acta Universitatis Lodziensis. Folia Oeconomica; 2016, 3, 322
0208-6018
2353-7663
Pojawia się w:
Acta Universitatis Lodziensis. Folia Oeconomica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The Number of Groups in an Aggregated Approach in Taxonomy with the Use of Stability Measures and Classical Indices – A Comparative Analysis
Wybór liczby grup w podejściu zagregowanym w taksonomii z wykorzystaniem miar stabilności oraz klasycznych indeksów – porównanie wyników
Autorzy:
Rozmus, Dorota
Powiązania:
https://bibliotekanauki.pl/articles/2152805.pdf
Data publikacji:
2022-06-14
Wydawca:
Uniwersytet Łódzki. Wydawnictwo Uniwersytetu Łódzkiego
Tematy:
taksonomia
klasteryzacja
podejście zagregowane
stabilność metod taksonomicznych
taxonomy
clustering
cluster ensemble
cluster stability
Opis:
Recently, the two concepts that have been often discussed in the literature on taxonomy are the cluster ensemble and stability. An interesting proposal regarding the combination of these two concepts was presented by Șenbabaoğlu, Michailidis, and Li, who proposed as a measure of stability a proportion of ambiguously clustered pairs (PAC) for selecting the optimal number of groups in the cluster ensemble. This proposal appeared in the field of genetic research, but as the authors themselves write, the method can be successfully used also in other research areas. The aim of this paper is to compare the results of indicating the number of clusters (k parameter) using the aggregated approach in taxonomy and the above-mentioned measure of stability and classical indices (e.g. Caliński–Harabasz, Dunn, Davies–Bouldin).
We współczesnych rozważaniach z dziedziny taksonomii w literaturze często poruszane są dwa pojęcia: podejście zagregowane oraz stabilność metod grupowania. Do tej pory te były one rozważane osobno. Natomiast ciekawą propozycję w zakresie połączenia tych dwóch pojęć przedstawili Y. Șenbabaoğlu, G. Michailidis i J.Z. Li, którzy zasugerowali podejście zagregowane w taksonomii, połączone z zaproponowaną przez siebie miarą stabilności jako kryterium wyboru optymalnej liczby grup (k). Celem artykułu jest porównanie wyników wyboru wartości parametru k za pomocą wspomnianej miary stabilności oraz klasycznych indeksów (np. Calińskiego‑Harabasza, Dunna).
Źródło:
Acta Universitatis Lodziensis. Folia Oeconomica; 2021, 6, 357; 55-67
0208-6018
2353-7663
Pojawia się w:
Acta Universitatis Lodziensis. Folia Oeconomica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Clustering of Symbolic Data with Application of Ensemble Approach
Klasyfikacja danych symbolicznych z wykorzystaniem podejścia wielomodelowego
Autorzy:
Pełka, Marcin
Powiązania:
https://bibliotekanauki.pl/articles/905659.pdf
Data publikacji:
2013
Wydawca:
Uniwersytet Łódzki. Wydawnictwo Uniwersytetu Łódzkiego
Tematy:
cluster ensemble
co-associacion matrix
symbolic data
Opis:
Ensemble approaches based on aggregated models have been applied with success to discrimination and regression tasks. Nevertheless this approach can be applied to cluster analysis tasks. Many articles have proved that, by combining different clusterings, an improved solution can be obtained. The article presents the possibility of applying ensemble approach based on aggregated models to cluster symbolic data. The paper presents also presents results of clustering obtained by applying ensemble approach.
Podejście wielomodelowe oparte na agregacji modeli jest z powodzeniem wykorzystywane w zagadnieniach dyskryminacyjnych i regresyjnych. Niemniej jednak podejście to może zostać także zastosowane w zagadnieniu klasyfikacji. W wielu artykułach wskazuje się, że połączenie wielu różnych klasyfikacji pozwala otrzymać lepsze wyniki. Artykuł przedstawia możliwość zastosowania podejścia wielomodelowego w klasyfikacji danych symbolicznych. W artykule przedstawiono także wyniki klasyfikacji z wykorzystaniem podejścia wielomodelowego.
Źródło:
Acta Universitatis Lodziensis. Folia Oeconomica; 2013, 285
0208-6018
2353-7663
Pojawia się w:
Acta Universitatis Lodziensis. Folia Oeconomica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Podejście wielomodelowe analizy danych symbolicznych w ocenie pozycji produktów na rynku
Ensemble learning for symbolic datain product positioning
Autorzy:
Pełka, Marcin
Powiązania:
https://bibliotekanauki.pl/articles/424929.pdf
Data publikacji:
2013
Wydawca:
Wydawnictwo Uniwersytetu Ekonomicznego we Wrocławiu
Tematy:
ensemble clustering
cluster analysis of symbolic data
product positioning
Opis:
Product positioning is a wide range of business activities. Positioning is the process by which marketers try to create an image or identity in the minds of their target market for its product, brand, or organization. The main aim of the paper is to preset and apply ensemble learning for symbolic data in cluster analysis in order to evaluate a product position. Empirical part of the paper presents the application of co-occurrence matrix and bagging algorithm in ensemble learning for symbolic data (car market data was used). These two approaches reached almost the same results when considering adjusted Rand index.
Źródło:
Econometrics. Ekonometria. Advances in Applied Data Analytics; 2013, 2(40); 95-102
1507-3866
Pojawia się w:
Econometrics. Ekonometria. Advances in Applied Data Analytics
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-7 z 7

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies