Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Carcinogenic" wg kryterium: Temat


Tytuł:
Do we know PM1 in Poland inside out?
Autorzy:
Rogula-Kozłowska, Wioletta
Powiązania:
https://bibliotekanauki.pl/articles/28407390.pdf
Data publikacji:
2023
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
PM1
carcinogenic compounds
particulate matter
health effect
związki rakotwórcze
cząstki stałe
efekt zdrowotny
Opis:
The paper provides a concise review of key publications on particulate matter of aerodynamic diameter below 1 μm (PM1) having been published in Poland in the years 2007–2022. Data and conclusions related to the study of concentrations, chemical composition, and content of selected toxic and carcinogenic compounds in PM1 as well as methods and conclusions on the assessment of the origin of PM1 in various regions of Poland have been tabulated. The conclusions of this review attempt to outline the directions of further research that could prove crucial in obtaining information and filling the identified gaps in knowledge about PM1 in Poland. While this work may be theoretical, it can serve as a valuable and compact source material for research groups, organizations supervising and financing research, as well as those responsible for assessing air quality and mitigating negative health effects related to air quality.
Źródło:
Environment Protection Engineering; 2023, 49, 4; 5--27
0324-8828
Pojawia się w:
Environment Protection Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Kadm i jego związki nieorganiczne. Metoda oznaczania w powietrzu na stanowiskach pracy
Cadmium and its inorganic compounds. Determination in workplace air
Autorzy:
Surgiewicz, Jolanta
Powiązania:
https://bibliotekanauki.pl/articles/23352079.pdf
Data publikacji:
2022
Wydawca:
Centralny Instytut Ochrony Pracy
Tematy:
kadm
związki kadmu
metale rakotwórcze
metoda analityczna
powietrze na stanowiskach pracy
narażenie zawodowe
nauki o zdrowiu
inżynieria środowiska
cadmium
cadmium compounds
carcinogenic metals
analytical method
workplace air
occupational exposure
health sciences
environmental engineering
Opis:
Kadm i jego związki nieorganiczne powodują raka płuc. Wykazano także zależność między narażeniem ludzi na kadm i jego związki a rakiem nerek i prostaty. Szacuje się, że na kadm i jego związki jest narażonych kilka tysięcy osób zatrudnionych w hutnictwie, przy produkcji akumulatorów, stopów, pigmentów, tworzyw sztucznych oraz przy spawaniu. W Polsce wartość najwyższego dopuszczalnego stężenia (NDS) dla kadmu (CAS: 7440-43-9) i jego związków nieorganicznych została zmieniona. Wartość NDS mająca obowiązywać od 2027 roku odnosi się do frakcji wdychalnej i wynosi 0,001 mg/m³ . W okresie przejściowym od lipca 2021 do 2027 roku przyjęto wartość NDS wynoszącą 0,004 mg/m³ . Opracowano metodę oznaczania kadmu i jego nieorganicznych związków umożliwiającą oznaczanie tej substancji w powietrzu na stanowiskach pracy z wykorzystaniem metody absorpcyjnej spektrometrii atomowej z elektrotermiczną atomizacją (ET-AAS), zgodną z wymaganiami zawartymi w normie europejskiej PN-EN 482. Kadm oznaczano w zakresie stężeń: 0,10 ÷ 1,00 i 0,50 ÷ 5,00 µg/l. Uzyskano oznaczalność metody w powietrzu na stanowiskach pracy wynoszącą 0,0001 mg/m³ oraz możliwość oznaczania tej substancji w zakresie stężeń 0,00010 ÷ 0,0104 mg/m³ dla próbki powietrza 480 l. Przedstawiona metoda umożliwia oznaczanie kadmu i jego związków nieorganicznych w powietrzu na stanowiskach pracy w wymaganym zakresie 0,1 ÷ 2 nowych wartości NDS. Zakres tematyczny artykułu obejmuje zagadnienia zdrowia oraz bezpieczeństwa i higieny środowiska pracy będące przedmiotem badań z zakresu nauk o zdrowiu oraz inżynierii środowiska.
Cadmium and its inorganic compounds cause lung cancer. A relationship between human exposure to cadmium and its inorganic compounds and renal and prostate cancer has also been demonstrated. It is estimated that several thousand people employed in metal production are exposed to cadmium and its inorganic compounds; in metallurgy, in the production batteries, alloys, pigments, plastics and welders. The values of the maximum allowable concentration (NDS) for cadmium [7440-43-9] and its inorganic compounds in Poland were changed. The NDS value, which is meant to become obligatory from 2027, refers to the inhalable fraction and amounts to 0.001 mg/m³ . In the transition period from July 2021 to 2027, the NDS value was set at 0.004 mg/m³ . A method for the determination of cadmium and its inorganic compounds was developed, enabling the determination of this substance in the air at workplaces with the use of the atomic absorption spectrometry with electrothermal atomization (ET AAS), in accordance with the requirements of the European standard PN-EN 482. Cadmium was determined in the concentration range: 0.10–1.00 µg/l and 0.50–5.00 µg/l. The method’s determination in the air at workplaces of 0.0001 mg/m³ was obtained for, as well as the possibility of determining this substance in the concentration range of 0.00010–0.0104 mg/m³ for a 480-l air sample. The presented method enables the determination of this substance in the air at workplaces in the required range of 0.1–2 new NDS values. This article discusses the problems of occupational safety and health, which are covered by health sciences and environmental engineering.
Źródło:
Podstawy i Metody Oceny Środowiska Pracy; 2022, 3 (113); 153--183
1231-868X
Pojawia się w:
Podstawy i Metody Oceny Środowiska Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Oksym butan-2-onu jako potencjalny czynnik rakotwórczy dla ludzi – dowody i skutki dla przedsiębiorstw wynikające ze zmiany klasyfikacji
Butane-2-one oxime as a potential carcinogen for humans – evidence and effects on businesses resulting from reclassification
Autorzy:
Kupczewska-Dobecka, Małgorzata
Powiązania:
https://bibliotekanauki.pl/articles/2153868.pdf
Data publikacji:
2022
Wydawca:
Instytut Medycyny Pracy im. prof. dra Jerzego Nofera w Łodzi
Tematy:
narażenie zawodowe
NDS
oksym butan-2-onu
MEKO
działanie rakotwórcze
ograniczenie stosowania
occupational exposure
OEL
butan-2-one oxime
carcinogenic effects
restriction of using
Opis:
Przedstawiono i oceniono dowody zmiany kategorii rakotwórczości oksymu butan-2-onu (MEKO) oraz skutków wynikających z tej zmiany dla przedsiębiorstw produkujących lub stosujących ten związek. Przeprowadzono przegląd internetowych baz danych czasopism naukowych z uwzględnieniem dostępnych na stronie ECHA raportów dotyczących harmonizacji klasyfikacji i oznakowania MEKO na poziomie Unii Europejskiej. Rozporządzeniem Komisji (UE) 2020/1182 wprowadzono zharmonizowaną klasyfikację i oznakowanie MEKO pod względem działania rakotwórczego do kategorii 1B. Indukcja nowotworów, ich charakter i znaczenie dla ludzi oraz wrażliwość osobników obu płci 2 badanych gatunków – wszystkie te czynniki wspierają klasyfikację MEKO do kategorii rakotwórczości 1B. Z drugiej strony uzyskano ujemne wyniki badań genotoksyczności MEKO, w tym na komórkach ssaków i in vivo na zwierzętach. Jest to argument, że klasyfikacja MEKO do kategorii 2 rakotwórczości pozostaje właściwa. Ze zmiany kategorii rakotwórczości MEKO wynikają skutki prawne dla przedsiębiorstw, w tym dotrzymanie warunków ograniczenia REACH, które obejmuje restrykcjami wprowadzanie MEKO do powszechnej sprzedaży, prowadzenie rejestru prac, których wykonywanie powoduje konieczność pozostawania w kontakcie z MEKO lub jego mieszaninami zawierającymi go w stężeniu ≥0,1%. Zgodnie z opinią dostawców obecnie nie ma praktycznego i tak dobrze zbadanego zamiennika MEKO mimo prób znalezienia go w ostatnich latach. Ryzyko dodatkowego raka wątroby w przypadku 40-letniego narażenia zawodowego na MEKO wynosi 4:100 000 w stężeniu ok. 0,7 mg/m3 i jest to ryzyko akceptowalne zgodnie z przyjętymi w Polsce ustaleniami. Dotrzymywanie dopuszczalnych stężeń MEKO w powietrzu środowiska pracy na tym poziomie powinno zabezpieczyć pracowników przed jego działaniem rakotwórczym.
Evidence of a change in the carcinogenicity category of butan-2-one oxime (MEKO) and the results of this change for manufacturing and using companies was presented and assessed. The online databases of scientific journals were reviewed, taking into account the reports on the harmonization of MEKO classification and labeling at EU level available on the ECHA website. Commission Regulation (EU) 2020/1182 introduced harmonized classification and labeling of MEKO for carcinogenicity to category 1B. The induction of tumors, the nature and importance of tumors for humans, and the sensitivity of the 2 species tested, both sexes – all of these factors support the classification of MEKO into the carcinogenicity category 1B. On the other hand, MEKO is negative in genotoxicity studies, including in mammalian cells and in vivo in animals. This is the argument that the classification of MEKO as carcinogen category 2 remains appropriate. The change in the MEKO carcinogenicity category results in legal consequences for companies, such as compliance with the conditions of REACH restriction, which includes restrictions on placing MEKO on the market for sale to the general public, keeping a register of works that require contact with MEKO or its mixtures containing MEKO in a concentration ≥0.1%. According to the opinion of MEKO suppliers, there is currently no practical MEKO substitute that has been so well researched, despite attempts to find it in recent years. The risk of additional liver cancer in the case of 40-year occupational exposure to MEKO is 4:100 000 at a concentration of approx. 0.7 mg/m3, and it is an acceptable risk in accordance with the arrangements adopted in Poland. Compliance with the permissible concentrations of MEKO in the air of the working environment at this level should protect employees against the carcinogenic effect of MEKO.
Źródło:
Medycyna Pracy; 2022, 73, 6; 457-470
0465-5893
2353-1339
Pojawia się w:
Medycyna Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Pollution and health risk assessment of water quality: a case study in Mohammedia prefecture in Morocco
Autorzy:
El morabet, R.
Berhazi, L.
Khan, R. A.
Bouhafa, S.
Khan, N. A.
Hakh, T.
Romaniv, A.
Powiązania:
https://bibliotekanauki.pl/articles/2055750.pdf
Data publikacji:
2022
Wydawca:
Stowarzyszenie Komputerowej Nauki o Materiałach i Inżynierii Powierzchni w Gliwicach
Tematy:
water quality assessment
water pollution index
ecological risk
non-carcinogenic risk
carcinogenic risk
ocena jakości wody
wskaźnik zanieczyszczenia wody
ryzyko ekologiczne
ryzyko nierakotwórcze
ryzyko rakotwórcze
Opis:
Purpose: Water is vital for the sustenance of every life form. Urbanization, growing population and industrial development has led to exploitation of water resources globally. This study assesses quality of water resources of Mohammedia prefecture. Design/methodology/approach: The water quality analysis was carried out based on physio-chemical and heavy metal concentrations. The physio-chemical analysis comprised of status of concentration, overall quality and water pollution index evaluation. The heavy metal evaluation consisted of Ecological Risk Index, non-carcinogenic risk and carcinogenic risk assessment. Findings: The landfill near Ben Nfifikh River reported insignificant (WPI<1) – low level of pollution (>1≤1.5) for surface and groundwater points. However, the groundwater for Zenata region was found to pose both carcinogenic (CRt > 0.0001, range 0.4-35.31) and non-carcinogenic risks (HQ>1, range 6 -34) of higher degree rendering it unfit for human consumption. Hence, this study concludes that groundwater resources should not as water supply; instead, Oud El Maleh River can serve as surface water source for meeting requirements of Zenata region. Research limitations/implications: The data obtained can be categorized as landfill area near river Nfifikh and landfill area near river El Maleh. Both areas have been investigated for groundwater and surface water quality assessment. Practical implications: This study demonstrates the need to study the characteristics of groundwater (depth, flow rate, water renewal, etc.) before arranging a waste dump. This problem is especially relevant for arid countries, since residents experience a shortage of water, as well as a lack of rainfall provides a weak renewal of groundwater, which can contribute to the accumulation of a higher concentration of carcinogens in groundwater and provide a high risk to public health. If policymakers in arid countries and decision-makers have effective water quality maps, then the country can be more efficiently managed water resources without risking the population. Originality/value: The current study is planned as a multi-stage, each of which is supposed to conduct field studies of groundwater and surface water quality with appropriate parameters, analysis of institutional reports and related scientific studies in order to create an effective water quality map for rational water use.
Źródło:
Journal of Achievements in Materials and Manufacturing Engineering; 2022, 110, 2; 67--85
1734-8412
Pojawia się w:
Journal of Achievements in Materials and Manufacturing Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Application of Index Models for Assessing Freshwater Microplastics Pollution
Autorzy:
Enyoh, Christian Ebere
Verla, Andrew Wirnkor
Rakib, Md. Refat Jahan
Powiązania:
https://bibliotekanauki.pl/articles/1840784.pdf
Data publikacji:
2021
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
Carcinogenic
Estimated daily intake
Health risks
Modeling
Plastic pollution
Opis:
Due to the differences in reporting units and methodology on microplastics (MP) studies, there has been some difficulty in comparing results across studies. In this study, we presented index models that can be address this issue. Index models for pollution and health risks assessment was applied to MP data obtained from rivers in Nwangele L.G.A. Models such as microplastics contamination factor (MPCF), microplastics pollution load index (MPPLI), Microplastics polymer risk indices (Hi) and pollution risk index (MPR) for pollution and contamination assessment. Health risk models such estimated daily intake (EDI) and microplastic carcinogenic risks (MPCR) through oral and dermal pathway were also presented and applied. Results showed that there is no direct correlation of MP abundance with MPR. However, Hi correlated but with MPR. Increased MPs pollution risks and levels were extensively subject to the presence of harmful MPs polymers, just as the high MPs pollution loads index (MPPLI). The index models enabled easy comparison of MP pollution of the different rivers and provided concise information on the status of MPs in the rivers.
Źródło:
World News of Natural Sciences; 2021, 38; 37-48
2543-5426
Pojawia się w:
World News of Natural Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Arsen i jego związki nieorganiczne. Metoda oznaczania w powietrzu na stanowiskach pracy
Arsen and its inorganic compounds. Determination in workplace air
Autorzy:
Surgiewicz, Jolanta
Powiązania:
https://bibliotekanauki.pl/articles/2146836.pdf
Data publikacji:
2021
Wydawca:
Centralny Instytut Ochrony Pracy
Tematy:
metale rakotwórcze
metoda analityczna
powietrze na stanowiskach pracy
narażenie zawodowe
nauki o zdrowiu
inżynieria środowiska
carcinogenic metals
analytical method
workplace air
occupational exposure
health sciences
environmental engineering
Opis:
Arsen jest pierwiastkiem chemicznym zaliczanym do metaloidów (półmetali). Niektóre związki arsenu zostały sklasyfikowane (wg CLP) jako substancje rakotwórcze powodujące nowotwory skóry, układu oddechowego, wątroby i białaczkę. W przemyśle na arsen i jego związki narażeni są pracownicy zatrudnieni przy jego wydobyciu, w hutnictwie rud metali nieżelaznych, w procesach rafinacji metali, przy produkcji stopów, półprzewodników, pigmentów i insektycydów. Obowiązująca wartość normatywu higienicznego dla frakcji wdychalnej aerozolu arsenu i jego związków nieorganicznych w przeliczeniu na As w powietrzu na stanowiskach pracy wynosi 0,01 mg/m³ . Opracowano metodę umożliwiającą oznaczanie tej substancji w powietrzu w zakresie 0,1 ÷ 2 wartości normatywu higienicznego, zgodną z wymaganiami zawartymi w normie europejskiej PN-EN 482. Arsen oznacza się z wykorzystaniem absorpcyjnej spektrometrii atomowej z elektrotermiczną atomizacją (ET-AAS) w zakresie stężeń 5,00 ÷ 100,0 µg/l, co pozwala na oznaczanie arsenu i jego nieorganicznych związków w powietrzu w zakresie: 0,0010 ÷ 0,021 mg/m³ (dla objętości próbki powietrza – 480 l). Przedstawiona procedura umożliwia oznaczanie tej substancji z zastosowaniem dozymetrii indywidualnej. Zakres tematyczny artykułu obejmuje zagadnienia zdrowia oraz bezpieczeństwa i higieny środowiska pracy będące przedmiotem badań z zakresu nauk o zdrowiu oraz inżynierii środowiska.
Arsenic is a chemical element classified as metalloids (semi-metals). Some arsenic compounds have been classified (according to CLP) as carcinogens, causing cancers of skin, respiratory system, liver and leukemia. In the industry, workers are exposed to arsenic and its compounds in its extraction, in metallurgy of non-ferrous metal ores, in metal refining processes, in the production of alloys, semiconductors, pigments and insecticides. In Poland, binding value of the hygienic standard (NDS) at workplace air, for the inhalable fraction of arsenic aerosol and its inorganic compounds, converted into As is 0.01 mg/m³ . A determination method has been developed that enables the determination of this substance in the air of 0.1 − 2 values of the hygiene standard, in accordance with the requirements of Standard PN-EN 482. Arsenic is determined with the atomic absorption spectrometry with electrothermal atomization (ET-AAS), in the concentration range of 5.00 − 100.0 μg/l which allows the determination of arsenic and its compounds in workplace air in the range of 0.0010 − 0.021 mg/m³ (for 480-L air sample). The presented procedure enables the determination of this substance with the use of individual dosimetry. This article discusses the problems of occupational safety and health, which are covered by health sciences and environmental engineering.
Źródło:
Podstawy i Metody Oceny Środowiska Pracy; 2021, 4 (110); 143--165
1231-868X
Pojawia się w:
Podstawy i Metody Oceny Środowiska Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Cadmium, Lead and Zinc in the Soil-Plant-Alpaca System and Potential Health Risk Assessment Associated with the Intake of Alpaca Meat in Huancavelica, Peru
Autorzy:
Orellana Mendoza, Edith
Pérez Saenz, Lilia
Custodio, María
Bulege, Wilfredo
Yallico, Luz
Cuadrado, Walter
Powiązania:
https://bibliotekanauki.pl/articles/1839190.pdf
Data publikacji:
2021
Wydawca:
Polskie Towarzystwo Inżynierii Ekologicznej
Tematy:
bioaccumulation factor
heavy metals
alpaca meat
non-carcinogenic risk
carcinogenic risk
Opis:
The consumption of contaminated natural pastures with highly dangerous and toxic heavy metals such as cadmium (Cd) and lead (Pb) by Andean camelids could cause harmful effects on the health of people exposed via consumption of contaminated alpaca meat. The concentration of Cd, Pb and Zn in the soil-plant-alpaca system was determined and the potential health risk associated with the intake of alpaca meat was evaluated. Soil and grass samples were collected in grazing areas of the South American camelid, and in the Municipal Slaughterhouse of Huancavelica, 30 samples of alpaca pectoral muscle were collected. The concentrations of Cd in the soil, grass and alpaca muscle exceeded the threshold values of national and international standards. The bioaccumulation factor values of the three elements studied was less than 1, Cd was the element with the highest bioavailability and mobility in the soil-plant-alpaca muscle system. The mean concentration of Cd in muscle was 0.335 ± 0.088 mg/kg which exceeded the maximum level allowed by the FAO/WHO and the European Commission, the concentration of Pb and Zn did not exceed the regulated limits. No significant differences were detected in accumulation according to sex. The non-carcinogenic hazard index (HI) values for the studied metals indicated that there is no adverse health risk (HI < 1) for children and adults from alpaca meat intake, but they could experience carcinogenic risk from prolonged exposure to Cd, and for exceeding the 1×10–4 limit threshold. It is recommended to conduct further studies on the accumulation of potentially toxic elements in alpaca tissues in order to determine the possible total risk of heavy metals in consumer’s health.
Źródło:
Journal of Ecological Engineering; 2021, 22, 3; 40-52
2299-8993
Pojawia się w:
Journal of Ecological Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Pyły drewna – frakcja wdychana. Dokumentacja proponowanych dopuszczalnych wielkości narażenia zawodowego
Wood dust – inhalable fraction. Documentation of proposed values of occupational exposure limits (OELs)
Autorzy:
Soćko, Renata
Pakulska, Daria
Szymczak, Wiesław
Powiązania:
https://bibliotekanauki.pl/articles/1845107.pdf
Data publikacji:
2021
Wydawca:
Centralny Instytut Ochrony Pracy
Tematy:
pyły drewna
narażenie zawodowe
NDS
substancja uczulająca
substancja rakotwórcza
nauki o zdrowiu
inżynieria środowiska
wood dust
occupational exposure
OEL
sensitizing substance
carcinogenic substances
health sciences
environmental engineering
Opis:
Drewno jest surowcem przemysłu drzewnego. Narażenie na pyły drzew liściastych (drewno twarde) lub w mieszaninie z gatunkami iglastymi (drewno miękkie) jest skorelowane z wystąpieniem gruczolakoraka nosa. Astma zawodowa jest najczęściej wynikiem działania biologicznie aktywnych związków chemicznych obecnych w drewnie drzew liściastych i iglastych. Pyły drewna twardego i miękkiego mogą upośledzać drożność dróg oddechowych, wywołując przewlekłe choroby płuc. Biorąc pod uwagę skutki zdrowotne oraz uwzględniając przedstawione przez Komisję Europejską uwarunkowania socjoekonomiczne przedsiębiorstw, zmniejszono dotychczasową wartość NDS z 3 mg/m³ do 2 mg/m³ dla frakcji wdychalnej pyłów drewna z przypisem, że wartość NDS dotyczy wszystkich rodzajów pyłów drewna. Proponowana wartość jest na poziomie proponowanej przez Komisję Europejską wartości wiążącej dla frakcji wdychalnej pyłów drewna twardego i będzie obowiązywać w Polsce i w innych państwach Unii Europejskiej od 18 stycznia 2023 r. Do 17 stycznia 2023 r., w okresie przejściowym, dla pyłów drewna twardego obowiązuje wartość wiążąca 3 mg/m³ . Komisja UE zaliczyła prace związane z narażeniem na pyły drewna twardego i mieszanego do procesów technologicznych klasyfikowanych jako rakotwórcze dla ludzi (wg dyrektywy 2017/2398/WE). Ze względu na fakt, że pyły drewna wykazują działanie: rakotwórcze, mutagenne i pylicotwórcze, ustalenie wartości najwyższego dopuszczalnego stężenia chwilowego (NDSCh) jest nieuzasadnione. Pyły drewna oznakowano jako substancję rakotwórczą zgodnie z załącznikiem nr 1 rozporządzenia Ministra Zdrowia oraz – ze względu na możliwe działanie uczulające – literą „A”. Zakres tematyczny artykułu obejmuje zagadnienia zdrowia oraz bezpieczeństwa i higieny środowiska pracy będące przedmiotem badań z zakresu nauk o zdrowiu oraz inżynierii środowiska.
Wood is a raw material of the wood industry. Exposure to dust from deciduous trees (hardwood) or from a mixture with coniferous species (softwood) is correlated with nasopharyngeal adenocarcinomas. Occupational asthma is the result of actions of the biologically active compounds present in some wood species (both hardwood and softwood). Hardwood and softwood dusts may impair clear airway, resulting in chronic lung disease. Taking into account the health effects and the socio-economic conditions of enterprises presented by the European Commission, we propose to lower the current TLV value from 3 mg/m³ to 2 mg/m³ for the inhalable fraction of wood dust, with the note that the TLV value applies to all types of wood dust. The proposed value corresponds to the binding value proposed by the European Commission (BOELV) for the inhalable fraction of hardwood dusts set at 2 mg/m³, taking into account the socio-economic conditions of enterprises. This value will apply in Poland and EU countries from January 18, 2023. The Commission of the European Union included research on exposure to hard and mixed wood dust to technological processes classified as carcinogenic to humans (Directive 2017/2398/EC) and indicating that if there is a mixture of hardwood dust with other wood dust then MAC refers to the total wood dust present in the mixture. Due to the fact that wood dusts are carcinogenic, mutagenic and cause pneumoconiosis, the determination of STEL values is unjustified. Wood dust was labeled as a carcinogen with Annex 1 to the Regulation of Ministry of Health, and with letter “A” because of possible sensitization. This article discusses the problems of occupational safety and health, which are covered by health sciences and environmental engineering.
Źródło:
Podstawy i Metody Oceny Środowiska Pracy; 2021, 2 (108); 27-138
1231-868X
Pojawia się w:
Podstawy i Metody Oceny Środowiska Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Cytostatics as hazardous chemicals in healthcare workers’ environment
Autorzy:
Pałaszewska-Tkacz, Anna
Czerczak, Sławomir
Konieczko, Katarzyna
Kupczewska-Dobecka, Małgorzata
Powiązania:
https://bibliotekanauki.pl/articles/2161986.pdf
Data publikacji:
2019-04-03
Wydawca:
Instytut Medycyny Pracy im. prof. dra Jerzego Nofera w Łodzi
Tematy:
carcinogenic agents
safety data sheets
healthcare workers
OEL
cytostatic
occupational exposure limits
Opis:
Cytostatics not only induce significant side-effects in patients treated oncologically but also pose a threat to the health of occupationally exposed healthcare workers: pharmacists, physicians, nurses and other personnel. Since the 1970s numerous reports from various countries have documented the contamination of working areas with cytostatics and the presence of drugs/metabolites in the urine or blood of healthcare employees, which directly indicates the occurrence of occupational exposure to these drugs. In Poland the significant scale of occupational exposure to cytostatics is also confirmed by the data collected in the central register of occupational carcinogens/mutagens kept by the Nofer Institute of Occupational Medicine. The assessment of occupational exposure to cytostatics and health risks constitutes employers’ obligation. Unfortunately, the assessment of occupational risk resulting from exposure to cytostatics raises a number of concerns. Provisions governing the problem of workers’ health protection are not unequivocal because they derive from a variety of law areas, especially in a matter of hazard classification and safety data sheets for cytostatics. Moreover, no legally binding occupational exposure limits have been set for cytostatics or their active compounds, and analytical methods for these substances airborne and biological concentrations are lacking. Consequently, the correct assessment of occupational exposure to cytostatics, the evaluation of health hazards and the development of the proper preventive strategy appear difficult. The authors of this article described and discussed the amendments to the European provisions concerning chemicals in the light of employers’ obligations in the field of employees’ heath protection against the consequences of exposure to cytostatics. Some modifications aimed at a more effective health protection of workers occupationally exposed to cytostatics were also proposed. Int J Occup Med Environ Health. 2019;32(2):141–59
Źródło:
International Journal of Occupational Medicine and Environmental Health; 2019, 32, 2; 141-159
1232-1087
1896-494X
Pojawia się w:
International Journal of Occupational Medicine and Environmental Health
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Celowe użycie czynników biologicznych w Polsce na podstawie danych z Krajowego Rejestru Czynników Biologicznych
Biological agents intentionally used in Poland based on data from the National Register Of Biological Agents
Autorzy:
Kozajda, Anna
Powiązania:
https://bibliotekanauki.pl/articles/2162490.pdf
Data publikacji:
2018-08-20
Wydawca:
Instytut Medycyny Pracy im. prof. dra Jerzego Nofera w Łodzi
Tematy:
biologiczne czynniki rakotwórcze
rejestr czynników biologicznych
zawodowe narażenie na czynniki biologiczne
celowe użycie czynników biologicznych
zagrożenie biologiczne
ekspozycja zawodowa
carcinogenic biological agents
register of biological agents
occupational exposure to biological agents
intentional use of biological agents
biohazard
occupational exposure
Opis:
Wstęp Publikacja prezentuje zamierzone użycie czynników biologicznych w celach przemysłowych, diagnostycznych oraz naukowo- badawczych w przedsiębiorstwach w Polsce według stanu na grudzień 2017 r. Materiał i metody Dane pochodzą z Krajowego Rejestru Czynników Biologicznych (KRCB) – bazy danych, w której gromadzone są informacje o celowym użyciu czynników biologicznych w procesach pracy w Polsce. Wyniki Od 598 polskich przedsiębiorstw uzyskano zgłoszenia użycia czynników biologicznych w celach: diagnostycznych – 67,5%, naukowo-badawczych – 25% i przemysłowych – 7,5%. Najwięcej zgłoszeń przesłały laboratoria diagnostyczne przyszpitalne – 36% i inne niż przyszpitalne – 32% oraz szkoły wyższe i jednostki naukowo-badawcze – 13%. Ogółem wskazano 4477 narażonych pracowników (91,3% kobiet, 8,7% mężczyzn). Czynniki z 2. i 3. grupy zagrożenia stosowało odpowiednio 581 i 106 zakładów. Najczęściej wykorzystywano bakterie Escherichia coli (z wyjątkiem szczepów niepatogennych) – 504 zakładów (3529 narażonych pracowników), Staphylococcus aureus – 495 zakładów (3464 narażonych pracowników) oraz Pseudomonas aeruginosa – 459 zakładów (3157 narażonych pracowników). Według KRCB w 58 przedsiębiorstwach (9,7% zgłoszonych) używane były czynniki biologiczne uznane przez Międzynarodową Agencję Badań nad Nowotworami za rakotwórcze (wirusy: wirus zapalenia wątroby typu B (hepatitis B virus – HBV) – 10 zakładów i 257 narażonych pracowników, wirus zapalenia wątroby typu C (hepatitis C virus – HCV) – 10 zakładów i 232 pracowników, wirus Epsteina-Barr (Epstein-Barr virus – EBV) – 9 zakładów i 227 pracowników, ludzki wirus niedoboru odporności typu 1 (human immunodeficiency virus type 1 – HIV-1) – 8 zakładów i 186 pracowników, wirus brodawczaka ludzkiego (human papilloma virus – HPV) – 3 zakłady i 94 pracowników, ludzki wirus herpes typu 8 (human herpes virus type 8 – HHV-8) – 3 zakłady i 22 pracowników, ludzki wirus limfotropowy komórek T typu 1 (human T-lymphotropic virus type 1 – HTLV-1) – 1 zakład i 17 pracowników; pasożyty: Schistosoma haematobium – 2 zakłady i 4 pracowników, Clonorchis viverrini – 1 zakład i 2 pracowników, Clonorchis sinensis – 1 zakład i 2 pracowników; bakterie: Helicobacter pylori – 10 zakładów i 137 pracowników). Wnioski Sposób organizacji, umocowanie prawne oraz centralny charakter powodują, że KRCB stanowi unikalną bazę danych, umożliwiającą diagnozę sytuacji oraz śledzenie dynamiki w czasie w kontekście zawodowej ekspozycji na szkodliwe czynniki biologiczne celowo stosowane w zakładach pracy w Polsce. Med. Pr. 2018;69(4):413–424
Background Paper presents the intentional use of biological agents for industrial, diagnostic and research purposes in enterprises in Poland. Material and Methods The source of data is the National Register of Biological (in Polish KRCB) – the type of the database that gathers data about the intentional use of biological agents at work in Poland. The analysis includes tabular summaries of the data as of December 2017. Results Notifications were sent by 598 enterprises for: diagnostic – 67.5%, research – 25% and industrial purposes – 75%. Those mostly were hospital diagnostic laboratories – 36%, entities other than hospitals – 32% and higher education and research units – 13%. In total, 4477 workers (91.3% women, 8.7% men) were exposed to biological agents. Agents from 2nd and 3rd group of risk were used in 581 and 106 enterprises, respectively. Escherichia coli bacteria was most frequently used (with the exception of non-pathogenic strains) in 504 enterprises (3529 exposed workers), Staphylococcus aureus – 495 enterprises (3464 workers) and Pseudomonas aeruginosa – 459 enterprises (3157 workers). In 58 enterprises, biological agents recognized by the International Agency for Research on Cancer as carcinogenic were used (viruses: hepatitis B virus (HBV) – 10 enterprises and 257 workers, hepatitis C virus (HCV) – 10 enterprises and 232 workers, Epstein-Barr virus (EBV) – 9 enterprises and 227 workers, human immunodeficiency virus type 1 (HIV-1) – 8 enterprises and 186 workers, human papilloma virus (HPV) – 3 enterprises and 94 workers, human herpes virus type 8 (HHV-8) – 3 enterprises and 22 workers, human T-lymphotropic virus type 1 (HTLV-1) – 1 enterprise and 17 workers; parasites: Schistosoma haematobium – 2 enterprises and 4 workers, Clonorchis viverrini – 1 enterprises and 2 workers, Clonorchis sinensis – 1 enterprises and 2 workers; bacteria: Helicobacter pylori – 10 enterprises and 137 workers). Conclusions The network organization, legal base and central nature cause that the KRCB is a unique database that allows for diagnosis of the situation and tracking of dynamics in the context of occupational exposure to biological agents used intentionally in enterprises in Poland. Med Pr 2018;69(4):413–424
Źródło:
Medycyna Pracy; 2018, 69, 4; 413-424
0465-5893
2353-1339
Pojawia się w:
Medycyna Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Chloroeten : dokumentacja proponowanych dopuszczalnych wielkości narażenia zawodowego
Chloroethene : documentation of proposed values of occupational exposure limits (OELs)
Autorzy:
Pakulska, D.
Czerczak, S.
Powiązania:
https://bibliotekanauki.pl/articles/137441.pdf
Data publikacji:
2018
Wydawca:
Centralny Instytut Ochrony Pracy
Tematy:
chloroeten
chlorek winylu
narażenie zawodowe
NDS
substancja rakotwórcza
chloroethene
vinyl chloride
occupational exposure
OEL
carcinogenic substances
Opis:
Chloroeten (chlorek winylu, CW) jest związkiem wielkotonażowym. Nie występuje naturalnie w przyrodzie. Otrzymuje się go wyłącznie na drodze syntezy chemicznej. W normalnych warunkach ciśnienia i temperatury jest gazem. Chloroeten łatwo skrapla się pod ciśnieniem i w tej postaci w temperaturze 40÷70 C polimeryzuje, tworząc polichlorek winylu (PVC). Światowa produkcja przekracza 40 mln ton rocznie. Około 98% całej produkcji chloroetenu jest stosowane do wytwarzania polichlorku winylu (PWC) i kopolimerów. Pozostałą część produkcji chloroetenu wykorzystuje się do syntezy 1,1,1-trichloroetanu (metylochloroformu). Narażenie zawodowe na chloroeten występuje podczas syntezy i polimeryzacji, a także podczas plastyfikacji oraz przetwórstwa polimerów i kopolimerów. Przetwórstwo chlorku winylu ma miejsce w wielu branżach przemysłu: tworzyw sztucznych, obuwniczego, gumowego, farmaceutycznego i in. Główną drogą narażenia zawodowego jest narażenie inhalacyjne. Wchłanianie chloroetenu przez drogi oddechowe jest bardzo szybkie, jednak zaraz po opuszczeniu strefy narażenia jego poziom we krwi gwałtownie maleje. Dzieje się tak wskutek szybkiego metabolizmu i wydalania chloroetenu. Najwięcej wchłoniętego chloroetenu gromadzi się w wątrobie, gdzie zachodzi jego biotransformacja. Najbardziej reaktywnymi produktami przemiany tego związku są tlenek chloroetylenu i aldehyd chlorooctowy. Proces detoksykacji zachodzi w wątrobie i polega na sprzęganiu wymienionych produktów z glutationem. W wyniku dalszych przemian metabolicznych powstają metabolity wydalane głównie z moczem. W małych stężeniach jest to główna droga wydalania. Wraz ze wzrostem stężenia ekspozycyjnego wzrasta ilość chloroetenu wydalana przez płuca w postaci niezmienionej. Chloroeten wykazuje bardzo małą toksyczność ostrą zarówno w badaniach na ochotnikach, jak i na zwierzętach. U ludzi w wyniku ostrego narażenia inhalacyjnego obserwowano głównie zaburzenia neurologiczne i psychiatryczne. W badaniach na zwierzętach obserwowano działanie depresyjne na ośrodkowy układ nerwowy, a w badaniu histopatologicznym ustalono uszkodzenia: wątroby, płuc, nerek, serca oraz zaburzenia krzepliwości krwi. U pracowników przewlekle narażonych na duże stężenia chloroetenu stwierdzono objawy chorobowe zwane zespołem lub chorobą chlorku winylu, w tym: ból i zawroty głowy, niewyraźne widzenie, zmęczenie, brak apetytu, duszności, objawy zespołu Raynauda (ból, drętwienie i mrowienie w kończynach górnych i dolnych, uczucie zimna w kończynach), utrata masy ciały. W badaniach klinicznych stwierdza się: zmiany twardzinopodobne skóry (pseudosklerodermia), akroosteolizę, alergiczne zapalenie skóry, polineuropatie obwodowe, zaburzenia neurologiczne, a także skutki hepatotoksyczne. W badaniach toksyczności przewlekłej przy narażeniu inhalacyjnym najlepiej jest udokumentowane działanie hepatotoksyczne związku, które zostało stwierdzone już w małym stężeniu 26 mg/m3 (10 ppm). Ponadto, istnieją dowody działania chloroetenu na układ naczyniowy i układ oddechowy. Działanie związku na: kości, nerki, śledzionę, krew i skórę zwierząt jest słabiej udokumentowane. Chloroeten posiada właściwości mutagenne/genotoksyczne, które stwierdzono w testach wykonanych w warunkach in vitro zarówno bez, jak i z aktywacją metaboliczną, a także w testach w warunkach in vivo. W testach przeprowadzonych w warunkach in vitro aktywność chloroetenu była znacznie silniejsza (z udziałem egzogennego układu metabolizującego). W badaniach epidemiologicznych wykazano zwiększoną częstość: aberracji chromosomowych, wymian chromatyd siostrzanych, występowania mikrojąder i uszkodzeń DNA w limfocytach krwi obwodowej pracowników narażanych na związek. Najczęściej skutki genotoksyczne obserwowano wśród operatorów reaktorów polimeryzacyjnych, którzy byli okresowo narażeni na bardzo duże stężenia chloroetenu. Chloroeten został sklasyfikowany jako kancerogen przez Międzynarodową Agencję Badań nad Rakiem (IARC), (grupa 1.) i Unię Europejską (kategoria zagrożenia 1.A). Uznano, że istnieją wystarczające dowody działania rakotwórczego chloroetenu na ludzi oraz na zwierzęta doświadczalne. Działanie rakotwórcze chloroetenu ma podłoże genotoksyczne i wynika z powstawania reaktywnych metabolitów, głównie tlenku chloroetylenu i aldehydu chlorooctowego. Reagując z DNA, działają one mutagennie na komórki somatyczne, głównie komórki śródbłonka. W ten sposób odgrywają znaczącą rolę w etiologii naczyniakomięsaka oraz innych nowotworów zarówno niezłośliwych, jak i złośliwych. Na podstawie wyników badań epidemiologicznych wykazano istotny związek przyczynowo-skutkowy między narażeniem na chloroeten a zapadalnością na takie nowotwory wątroby, jak naczyniakomięsak (ASL, ang. Angiosarcoma of the liver) czy rak wątrobowokomórkowy (HCC, ang.hepatocellular carcinoma). Występuje silna korelacja między liczbą zgonów z powodu nowotworów wątroby, a czasem trwania i wielkością narażenia oraz długością okresu latencji, który w przypadku naczyniakomięsaka wątroby wynosi od 10 do > 30 lat. Działanie rakotwórcze chloroetenu na: płuca, mózg, układ limfatyczny i krwionośny, skórę i układ pokarmowy (nowotwory inne niż nowotwory wątroby) jest słabiej udokumentowane i niejednoznaczne. Istnieją doniesienia o działaniu związku na funkcje rozrodcze kobiet i mężczyn oraz wadach wrodzonych ich potomstwa. Istniejące dane są obarczone błędami metodycznymi i nie stanowią jednoznacznych dowodów na działanie teratogenne i wpływ chloroetenu na rozrodczość u osób zawodowo narażonych na ten związek. W badanich na zwierzętach chloroeten wpływał na funkcje rozrodcze i rozwój prenatalny szczurów przy dużych stężeniach, przy czym wartość NOAEL ustalono na poziomie 2 860 mg/m3 (1 100 ppm). Na podstawie wyników przeprowadzonych badań stwierdzono, że narządem docelowym działania toksycznego chloroetenu w narażeniu przewlekłym u ludzi jest wątroba, a skutkiem krytycznym – rozwój nowotworów wątroby. W badaniach epidemiologicznych najlepiej udokumentowany jest wpływ zawodowego skumulowanego narażenia (CED, ang. cumulative exposure dose) na rozwój naczyniakomięsaka wątroby (ASL). Komitet Naukowy SCOEL oszacował ryzyko wystąpienia ASL na poziomie 3 10-4 w wyniku 40-letniego narażenia zawodowego na chloroeten o stężeniu 2,6 mg/m3(1 ppm). Uwzględniając powyższe wyliczenia, jak i akceptowany poziom ryzyka zawodowego dla czynników rakotwórczych zawarty w granicach od 10-4 do 10-3, zaproponowano wartość NDS chloroetenu na poziomie 2,6 mg/m3 (1 ppm). Oznacza to możliwość przyrostu liczby przypadków wystąpienia trzech nowotworów wątroby (ASL) na 10 000 osób. Nie ma podstaw do ustalenia wartości najwyższego dopuszczalnego stężenia chwilowego (NDSCh) oraz wartości dopuszczalnej w materiale biologicznym (DSB). Proponuje się oznakowanie chloroetenu „Carc. 1A”, informujące, że jest to substancja rakotwórcza kategorii zagrożenia 1.A. Proponowana wartość najwyższego dopuszczalnego stężenia jest zgodna z wartością przyjętą przez ACGIH i w Kanadzie oraz proponowaną przez SCOEL wartością wiążącą dla tego związku, jak również wartością wiążącą umieszczoną w dyrektywie Parlamentu Europejskiego i Rady (UE) 2017/2398 z dnia 12 grudnia 2017 r. zmieniającą dyrektywę 2004/37/WE w sprawie ochrony pracowników przed zagrożeniem dotyczącym narażenia na działanie czynników rakotwórczych lub mutagenów podczas pracy.
Chloroethene (vinyl chloride) does not occur in nature. It is obtained exclusively in chemical synthesis. Under normal pressure and temperature conditions it is a gas. At 40–70 °C, it polymerizes to form polyvinyl chloride (PVC). It is a large-volume compound. Its annual global production exceeds 40 million t/year. About 98% of the total production is used to produce polyvinyl chloride (PVC) and copolymers. Chloroethene is also used in the synthesis of 1,1,1-trichloroethane (methyl chloroform) Exposure to chloroethene occurs during its synthesis and polymerization and during plastification and processing of polymers and copolymers that take place in many industries, including plastics, footwear, rubber and pharmaceutical industries. The main route of occupational exposure to chloroethene is inhalation. After cessation of exposure, the levels of chloroethene in blood fall sharply. Absorption of the compound through the respiratory tract is very rapid. Deposition of chloroethene in the body is limited due to its rapid metabolism and excretion. The largest amount of absorbed chloroethene accumulates in liver, where it undergoes biotransformation. The intermediate products of chloroethene metabolism, chloroethylene oxide and 2-chloroacetaldehyde, are the most reactive metabolites of this compound. The detoxification process takes place in the liver and relies on their conjugation with glutathione. As a result of further metabolism, final metabolites are formed which are excreted mainly with urine. In low concentrations, this is the main route of excretion. With the increase in the exposure concentration, the amount of chloroethene excreted by the lungs in the unchanged form increases. Chloroethene has a very low acute toxicity, which has been found in both volunteer and animal studies. In volunteers as a result of acute inhalation exposure to high concentrations, neurological and psychiatric disorders only were observed. In animal studies, depressive effects on the central nervous system were observed, and histopathological examination revealed damage of liver, lung, kidney, heart and blood clotting disorders. In workers chronically exposed to high concentrations of chloroethene, a syndrome of vinyl chloride disease was found, which includes symptoms of Raynaud's syndrome (pain, numbness and tingling in the upper and lower limbs, cold feeling in the limbs), pseudoscleroderma, acroosteolysis, allergic dermatitis, peripheral polyneuropathy, neurological disorders, and hepatotoxic effects. In animal studies chronically exposed by inhalation to chloroethene, the hepatotoxic effect of the compound is well documented. This effect has been found at a relatively low concentration of 26 mg/m3 (10 ppm). In addition, there is evidence that chloroethene affects the vascular and respiratory system. The effects of the compound on bones, kidneys, spleen, blood and animal skin are less documented. Chloroethene has mutagenic/genotoxic properties, as observed in in vitro tests both with and without metabolic activation, and in in vivo tests. In in vitro tests on bacterial strains, the activity of chloroethene was much stronger with the participation of an exogenous metabolic system. Epidemiological studies in workers exposed to chloroethene showed an increased incidence of chromosomal aberrations, sister chromatid exchanges, micronuclei in lymphocytes and DNA damage in peripheral blood lymphocytes. The highest frequency of genotoxic effects was observed among operators of polymerization reactors subject to periodic exposure to very high concentrations of chloroethene. Chloroetene has been classified as a carcinogen by the International Agency for Research on Cancer, IARC (Group 1) and the European Union (Category 1A). It was concluded that there was sufficient evidence of a carcinogenic effect of chloroethene in humans and sufficient evidence of carcinogenicity in experimental animals. Carcinogenic effect of chloroethene has a genotoxic basis and results from the formation of reactive metabolites, mainly chloroethylene oxide and 2-chloroacetaldehyde, which in reaction with DNA act mutagenically on somatic cells, mainly endothelial cells and thus play a significant role in the etiology of angiosarcoma. Epidemiological studies have demonstrated a significant causal link between exposure to chloroethene and the incidence of hepatic cancers: angiosarcoma of the liver (ASL) and hepatocellular carcinoma (HCC). Epidemiological studies have shown a correlation between the number of deaths from liver tumors and the duration and magnitude of exposure and the length of latency, which in the case of ASL ranges from 10 to >30 years. Carcinogenic effects of chloroethene on the lungs, brain, lymphatic and circulatory systems, skin and digestive system (cancers other than liver cancer) are less documented and ambiguous. There are reports of the effect of chloroethene on the reproductive functions of women and men and the defects of their offspring. Existing data do not provide unambiguous evidence of teratogenicity and reproductive effects in the case of occupational exposure. In animal studies, chloroethene affected fertility and prenatal development of rats at high concentrations, with a NOAEL of 2860 mg/m3 (1100 ppm). Available data indicate that the target organ of chloroethene toxicity in chronic exposure in humans is the liver, and the critical effect of exposure is the development of liver tumors. In epidemiological studies, the effect of occupational cumulative exposure dose (CED) on the development of angiosarcoma of the liver (ASL) is best documented. The SCOEL Scientific Committee using PBPK models estimated the risk of ASLs at 3 10-4 as a result of 40 years of occupational exposure to chloroethene in a concentration of 2.6 mg/m3 (1 ppm). Taking into account the above calculations, and the accepted level of occupational risk for carcinogens in the range from 10-4 to 10-3, the TWA of chloroethene at the level of 2.6 mg/m3 (1 ppm) has been proposed. This means an increase in the incidence of 3 liver cancers (ASL) per 10,000 people. There is no substantive basis to determine a short-term exposure limit (STEL) and acceptable concentration in biological material (DSB). It is proposed to label the compound as "Carc. 1A " – carcinogen category 1A. The proposed value is in line with the value adopted by ACGIH and in Canada and the binding value proposed by SCOEL for this compound, and the binding value included in Directive of the European Parliament and of the Council (EU) 2017/2398 of 12 December 2017 amending Directive 2004/37/EC on the protection of workers from the risks related to exposure to carcinogens or mutagens at work.
Źródło:
Podstawy i Metody Oceny Środowiska Pracy; 2018, 3 (97); 19-76
1231-868X
Pojawia się w:
Podstawy i Metody Oceny Środowiska Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Obesity as a tumour development triggering factor
Autorzy:
Budny, A.
Grochowski, C.
Kozłowski, P.
Kolak, A.
Kamińska, M.
Budny, B.
Abramiuk, M.
Burdan, F.
Powiązania:
https://bibliotekanauki.pl/articles/2082058.pdf
Data publikacji:
2018
Wydawca:
Instytut Medycyny Wsi
Tematy:
cancer
malignancy
overweight
carcinogenesis
carcinogenic
Opis:
Introduction. The overweight and obesity epidemic represents a rapidly growing threat to the health of populations in an increasing number of countries. Nearly one-third of the world’s population has excess adipose tissue. Nowadays, obesity occurrence is so common that it is replacing more traditional problems, such as an undernutrition and infectious diseases, as the most significant causes of ill health. If the current trend continues, almost half of the world’s adult population will be overweight or obese by 2030. Objective. The aim of this study is to show the connection between recent trends in body mass index, and the globally changing cancer profile. State of knowledge. A range of clinical and epidemiological studies have shown the relationship between excess body fat and the most frequently occurring malignancies. Obesity is associated with many cancers, such as: breast, colorectal, liver, lung, kidney, oesophageal, pancreatic, endometrium, ovarian, prostate, thyroid, and gallbladder cancer. Conclusions. In the light of this information, the study supports the claimed statement that obesity is one of the major health problems of the 21st century. Considering the increase in the number of obese people worldwide, it is necessary to develop a strategy allowing to prevent it. Fighting against unhealthy lifestyle in order to reduce overweight and obesity in society may have an essential impact on decreasing the number of incidences of cancer.
Źródło:
Annals of Agricultural and Environmental Medicine; 2019, 26, 1; 13-23
1232-1966
Pojawia się w:
Annals of Agricultural and Environmental Medicine
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Pharmacological and dietary factors in prevention of colorectal cancer
Autorzy:
Waluga, M.
Zorniak, M.
Fichna, J.
Kukla, M.
Hartleb, M.
Powiązania:
https://bibliotekanauki.pl/articles/70740.pdf
Data publikacji:
2018
Wydawca:
Polskie Towarzystwo Fizjologiczne
Tematy:
colorectal cancer
malignant tumour
carcinogenic factor
prevention
cyclooxygenase-2
celecoxib
microelement
dietary factor
life style
Źródło:
Journal of Physiology and Pharmacology; 2018, 69, 3
0867-5910
Pojawia się w:
Journal of Physiology and Pharmacology
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
THE EFFECT OF METRONIDAZOLE ON THE VIABILITY OF CAL-27 TONGUE CANCER CELLS.
Autorzy:
Tołoczko-Iwaniuk, Natalia
Dziemiańczyk-Pakieła, Dorota
Celińska-Janowicz, Katarzyna
Drągowski, Paweł
Groth, Dawid
Reszeć, Joanna
Car, Halina
Borys, Jan
Miltyk, Wojciech
Powiązania:
https://bibliotekanauki.pl/articles/895561.pdf
Data publikacji:
2018-10-31
Wydawca:
Polskie Towarzystwo Farmaceutyczne
Tematy:
metronidazole
oral cancer
CAL-27
carcinogenic potential of the drugs
Opis:
Metronidazole belongs to the most commonly prescribed medications for bacterial and parasitic infections worldwide. It is also used in perioperative prevention prior to bowel, and head and neck surgeries. Despite the fact that the World Health Organization has placed it on its List of Essential Medicines, it is considered potentially carcinogenic. A great number of research studies have been conducted to clarify this issue, but results are inconclusive. None of the studies focused on the influence of metronidazole on oral cancer development. The aim of our study was to evaluate the impact of metronidazole on the viability of tongue cancer cells. The research was conducted on the tongue squamous cell carcinoma cell line (CAL-27). Metronidazole dissolved in growth medium was applied to the cell culture at concentrations: 1, 10, 50, 100μg/mL. Toxicity of the drug was evaluated by MTT assay and the [3H]-thymidine incorporation test. The MTT test revealed a significant increase in cell viability under the influence of metronidazole after 24h, at the highest concentration of the drug (100μg/mL), but had no impact on cell viability at other concentrations and after 48h and 72h. The results of the [3H]-thymidine incorporation test did not show significant results. Summarizing, metronidazole stimulates the viability of tongue squamous cell carcinoma cells according to its concentration and the time of incubation (results significant at the concentration 100μg/mL, after 24 hours of incubation).
Źródło:
Acta Poloniae Pharmaceutica - Drug Research; 2018, 75, 5; 1233-1240
0001-6837
2353-5288
Pojawia się w:
Acta Poloniae Pharmaceutica - Drug Research
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Pyły drewna – frakcja wdychana : dokumentacja proponowanych dopuszczalnych wielkości narażenia zawodowego
Wood dust – inhalable fraction : documentation of proposed values of occupational exposure limits (OELs)
Autorzy:
Pakulska, D.
Soćko, R.
Szymczak, W.
Powiązania:
https://bibliotekanauki.pl/articles/137985.pdf
Data publikacji:
2017
Wydawca:
Centralny Instytut Ochrony Pracy
Tematy:
pyły drewna
narażenie zawodowe
NDS
substancja uczulająca
substancja rakotwórcza
wood dust
occupational exposure
OEL
sensitizing substance
carcinogenic substances
Opis:
Drewno jest surowcem przemysłu drzewnego, stosowanym w postaci drewna litego lub w formie przetworzonej. Zawodowe narażenie na pyły drewna występuje podczas obróbki i przerobu drewna. Największe poziomy stężeń pyłów drewna w środowisku pracy odnotowano w zakładach meblarskich i stolarskich. Liczba pracowników narażonych na pyły drewna w Polsce oszacowana w ramach projektu WOODEX (lata 2000-2003) wynosiła 310 tys., z czego 79 tys. było narażonych na stężenia pyłów drewna < 0,5 mg/m3, 52 tys. na stężenia: 0,5 ÷ 1 mg/m3, 63 tys. na stężenia: 1 ÷ 2 mg/m3, 72 tys. na stężenia: 2 ÷ 5 mg/m3 i 44 tys. na stężenia > 5 mg/m3. Zgodnie z danymi z bazy zawierającej wyniki pomiarów narażenia na pyły wykonane w wybranych branżach gospodarki w Polsce w latach 2001-2005, opracowanej w Instytucie Medycyny Pracy w Łodzi przy współpracy z Głównym Inspektoratem Sanitarnym, wartość średnia arytmetyczna stężeń pyłu wdychanego w sektorze produkcji drewna i wyrobów z drewna (z wyłączeniem mebli) wynosiła 2,08 mg/m3. Stężenie to wyliczono na podstawie 8602 przeprowadzonych pomiarów. W przypadku pyłów drewna twardego przekroczenia wartości NDS na stanowiskach pracy odnotowano w ponad 20% pomiarów, natomiast w przypadku drewna miękkiego – w poniżej 10% pomiarów. Narażenie na pyły drzew liściastych (drewno twarde, głównie dębowe i bukowe) lub w mieszaninie z gatunkami iglastymi (drewno miękkie) jest skorelowane z wystąpieniem gruczolakoraka nosa, natomiast nienowotworowe skutki oddechowe (oprócz astmy) nie są skorelowane ze specyficznym typem drewna. Astma zawodowa jest najczęściej wynikiem działania biologicznie aktywnych związków chemicznych obecnych w drewnie zarówno gatunków liściastych, jak i iglastych. Jednym z lepiej przebadanych gatunków drewna i źródłem wiedzy o astmie zawodowej są pyły drewna żywotnika olbrzymiego. Zarówno pyły drewna twardego, jak i miękkiego mogą upośledzać drożność dróg oddechowych, wywołując przewlekłe choroby płuc, a skutki narażenia, w zależności od rozmiaru cząstek drewna, dotyczą górnych lub dolnych dróg oddechowych. Zarejestrowano następujące choroby wśród pracowników narażonych na pyły drewna: przewlekłe zapalenie oskrzeli, zapalenia nosa i spojówek, podrażnienie skóry, jak również reakcje uczuleniowe skóry. Na podstawie wyników badań spirometrycznych wykazano zmniejszenie wskaźnika funkcji płuc w wyniku mechanicznego lub chemicznego podrażnienia tkanki płuc. Należy zaznaczyć, że zmiany czynnościowe układu oddechowego i wystąpienie astmy zawodowej stwierdzano u pracowników przemysłu drzewnego, głównie meblarskiego (bez historii atopii) o stężeniach poniżej 1 mg/m3 pyłów drewna. Z przeglądu wyników badań przeprowadzonych u ludzi oraz u zwierząt doświadczalnych wynika, że pyły drewna wykazują działanie mutagenne i genotoksyczne. Analiza DNA pobranego od osób z rakiem zatok przynosowych, zatrudnionych w narażeniu na pyły drewna, wykazała mutacje, głównie w genie k-ras, który jest jednym z najczęściej aktywowanych onkogenów w raku występującym u ludzi. Stwierdzono ponadto: mutacje h-ras u pacjentów z gruczolakorakiem, aberracje chromosomowe w limfocytach krwi obwodowej stolarzy, uszkodzenie nici DNA w hepatocytach szczurów, zwiększenie częstotliwości występowania mikrojąder w komórkach załamka jelita myszy i nabłonku nosa szczurów. Na podstawie wyników badań epidemiologicznych, w tym badań kliniczno-kontrolnych, wykazano związek między częstością występowania przypadków nowotworów nosa i zatok przynosowych a narażeniem na pył drewna. U narażonych na pyły drewna stwierdzono znacznie większe ryzyko wystąpienia gruczolakoraków, w porównaniu z ryzykiem występowania raka płaskonabłonkowego. Międzynarodowa Agencja Badań nad Rakiem uznała, że istnieją wystarczające dowody działania rakotwórczego pyłu drewna u ludzi i zaliczyła je do grupy 1., czyli substancji o udowodnionym działaniu rakotwórczym dla ludzi. Komisja Unii Europejskiej zaliczyła prace związane z narażeniem na pyły drewna twardego i mieszanego do procesów technologicznych klasyfikowanych jako rakotwórcze dla ludzi (wg dyrektywy 2004/37/WE) oraz ustaliła wartość wiążącą narażenia zawodowego (BOELV) dla frakcji wdychalnej pyłów drewna twardego na poziomie 5 mg/m3 z zaznaczeniem, że jeżeli występuje mieszanina pyłów drewna twardego z innymi pyłami drewna, to wartość najwyższego dopuszczalnego stężenia (NDS) dotyczy wszystkich pyłów drewna obecnych w mieszaninie. W Komitecie Naukowym SCOEL podział na drewna twarde i miękkie został zaniechany, a wskaźnikową dopuszczalną wielkość narażenia zawodowego py- łów drewna (dla frakcji wdychalnej 1 mg/m3, a dla pyłu całkowitego 0,5 mg/m3) zaproponowano, uwzględniając, oprócz ich działania drażniącego na górne i dolne drogi oddechowe, także działanie rakotwórcze. W Komitecie Doradczym ds. Bezpieczeństwa i Ochrony Zdrowia w Miejscu Pracy Komisji Europejskiej (ACSHW, Advisory Committee on Safety and Heath at Work) rozważano skutki zdrowotne narażenia na pyły drewna oraz uwarunkowania socjoekonomiczne i zaproponowano wartość wiążącą (BOELV) dla pyłów drewna twardego na poziomie 3 mg/m3, uznając, iż mniejsza wartość mogłaby spowodować zamknięcie wielu przedsiębiorstw, głównie małych, zatrudniających od 1 do 9 pracowników. Ustalenie wartości normatywu higienicznego pyłów drewna komplikuje fakt, że nigdy nie mamy do czynienia z narażeniem na samo drewno. Jest to narażenie, m.in. na związki chemiczne występujące naturalnie w drewnie (większość z nich wykazuje działanie drażniące i uczulające). Ponadto frakcja biologiczna (bakterie, pleśnie) występująca w pyłach drewna, głównie świeżego, jak również takie substancje konserwujące drewno, jak rozpuszczalniki organiczne czy formaldehyd mogą stanowić zagrożenie dla zdrowia pracowników. Kolejną zmienną rozpatrywaną przy ocenie ryzyka zawodowego są rozmiary cząstek emitowanych podczas przerobu drewna, które różnią się w zależności od rodzaju drewna i sposobu jego obróbki. Średnica aerodynamiczna cząstek mieści się na ogół w przedziale 10 ÷ 30 µm, co klasyfikuje je do frakcji ekstratorakalnej (wnikającej w obręb głowy) lub torakalnej (wnikającej w obszar tchawiczo- -oskrzelowy). Udział procentowy frakcji respirabilnej wynosi najczęściej 15 ÷ 20%. W celu ustalenia wartości NDS pyłów drewna uwzględniono dane pochodzące z badania przekrojowego przeprowadzonego u 161 osób zatrudnionych w narażeniu na pyły drewna w 54 zakładach meblarskich. U osób narażonych badano drożność nosa po narażeniu na pyły drewna mieszanego o stężeniu małym (0,17 ÷ 0,74 mg/m3), średnim (0,74 ÷ 1,42 mg/m3) oraz dużym (1,42 mg/m3). W porównaniu z okresem przed rozpoczęciem pracy, pyły drewna o stężeniu średnim i dużym istotnie statystycznie: zwiększały przekrwienie błony śluzowej nosa, zmniejszały pojemność jam nosowych i zmniejszały powierzchnię przekroju poprzecznego nosa po 4 i 7 h pracy. Stwierdzono istotną statystycznie zależność między stężeniem pyłu drewna a stopniem niedrożności nosa wyznaczonym metodą rynometrii akustycznej i oceną subiektywną. Wymienione objawy wystąpiły także, gdy stężenia pyłów były małe, lecz objawy te były nieistotne statystycznie. Ponadto, u osób z grupy kontrolnej zanotowano istotne różnice drożności nosa przed rozpoczęciem pracy w porównaniu z okresem po pracy, dlatego podważają one znaczenie obserwowanych zmian, gdy stężenia pyłów drewna są małe (0,17 ÷ 0,74 mg/m3). Międzyresortowa Komisja ds. NDS i NDN na 84. posiedzeniu w dniu 4.11.2016 r. po zapoznaniu się z dokumentacją i biorąc pod uwagę, poza naukową oceną ryzyka, również czynniki socjoekonomiczne, które zostały omówione z przedstawicielami branży drzewnej w Polsce, przyjęła stężenie 3 mg/m3 za wartość NDS dla frakcji wdychalnej wszystkich pyłów drewna. Proponowana wartość jest na poziomie proponowanej przez Komisję Europejską wartości wiążącej (BOELV) dla frakcji wdychalnej pyłów drewna twardego ustalonej na poziomie 3 mg/m3 , po uwzględnieniu uwarunkowań socjoekonomicznych przedsiębiorstw. Przyjęcie tej wartości, bez podziału na drewna twarde i miękkie, jest ponadto pewnym kompromisem między dotychczas obowiązującymi wartościami NDS dla pyłów drewna: 1) z wyjątkiem pyłów dębu i buku (4 mg/m3), 2) pyłów dębu i buku (2 mg/m3). Ze względu na fakt, że pyły drewna wykazują działanie: rakotwórcze, mutagenne i pylicotwórcze, ustalenie wartości najwyższego dopuszczalnego stężenia chwilowego (NDSCh) jest nieuzasadnione. Proponuje się oznakowanie pyłów drewna notacją: „Carc. 1” – substancja rakotwórcza kategorii 1., zgodnie z klasyfikacją Międzynarodowej Agencji Badań nad Rakiem oraz, ze względu na możliwe działanie uczulające – literą „A”.
Wood is a raw material of the wood industry, which is used as a solid wood or in a processed form. Occupational exposure to wood dust occurs during processing and woodworking. The highest levels of wood dust concentrations in the working environment were recorded in the furniture and carpentry industries. The number of workers exposed to wood dust in Poland estimated during WOODEX project (2000-2003) amounted to 310 000, of which 79 000 workers were exposed to wood dust at concentrations 2–5 mg/m3 and 44 000 workers at concentrations >5 mg/m3. According to data from selected sectors of the economy in Poland in years 2001–2005 developed in collaboration with the Chief Sanitary Inspectorate at the Institute of Occupational Medicine in Łódź, the arithmetic mean value of inhaled wood dust concentration in the wood production and wood products sector (excluding furniture) was 2.08 mg/m3. This concentration was calculated on the basis of 8602 measurements. In the case of hardwood dust, exceeded values of NDS at worksites were reported in more than 20% of the measurements, whereas in case of softwood – in less than 10% of measurements. Exposure to dust from deciduous trees (hardwood, mainly oak and beech wood) or from a mixture with coniferous species (softwood) is correlated with nasopharyngeal adenocarcinomas, whereas non-neoplastic respiratory symptoms, excluding asthma, are not correlated with a specific type of wood. Occupational asthma is most often the result of action of the biologically active compounds present in some wood species (both hardwood and softwood). One of the better-known species of wood and source of knowledge about occupational asthma is the dust of red cedar wood. Hardwood and softwood dusts may impair clear airway, resulting in chronic lung disease. The health effects of exposure to wood dust concern the upper or lower respiratory tract depending on the size of wood particles. Occupational exposure to wood dust causes: chronic bronchitis, rhinitis and conjunctivitis, skin irritation and allergic skin reactions. Spirometry has shown the reduction of the lung function index as a result of mechanical or chemical irritation of lung tissue. It should be noted that changes in pulmonary function and the occurrence of occupational asthma was found in the wood industry workers, mainly employed in furniture industry (with no history of atopy) at concentrations below 1 mg/m3 of wood dust. A review of the studies in humans and in experimental animals shows that wood dust has mutagenic and genotoxic effects. Analysis of DNA taken from people with cancer of the paranasal sinuses and exposed to wood dust showed mutations, mainly in gene k-ras, which is one of the most frequently activated oncogenes in human cancers. Furthermore, h-ras mutations in adenocarcinoma patients, chromosomal aberrations in carpenter peripheral blood lymphocytes, damage to DNA strands in rats hepatocytes, increase in micronuclear frequency in cells of mouse intestine and rats nasal epithelium have been found. The relationship between the incidence of a nose and paranasal sinuses cancer and the exposure to wood dust was proved on the basis of results of epidemiological studies. The risk of adenocarcinoma was significantly higher as compared to the risk of squamous cell carcinoma. The International Agency for Research on Cancer concluded that there was sufficient evidence of carcinogenicity of wood dust in humans and assigned it to Group 1 – a substances with proven carcinogenic effects in humans. The Commission of the European Union included research on exposure to hard and mixed wood dust to technological processes classified as carcinogenic to humans (Directive 2004/37 / EC) and established BOELV value for inhalable wood dust fraction on a level of 5 mg/m3 indicating that if there is a mixture of hardwood dust with other wood dust then NDS refers to the total wood dust present in the mixture. SCOEL Scientific Committee resigned from the division into hardwood and softwood and proposed the exposure limit value for wood dust, taking into account not only its irritating effects on upper and lower respiratory tract but also carcinogenicity (inhalable fraction: 1 mg/m3, total dust 0.5 mg/m3). The health effects of exposure to wood dust and the socio-economic conditions have also been considered by the Committee on Safety and Health at Work (ACSHW), which has proposed BOELV value for hardwood dusts of 3 mg/m3, taking into account that the lower value would result in the closure of many companies, mostly small, employing from 1 to 9 employees. Establishment of the hygienic standards of wood dust is complicated by the fact that we are never exposed to the wood itself. At the same time, we are exposed to naturally occurring chemicals in wood (most of them are irritating and sensitizing). Moreover, biological fraction (bacteria, mold) found in wood dust, mainly fresh, as well as wood preservatives such as organic solvents or formaldehyde, increase the health risk. Another variable considered when assessing risk associated with exposure to wood dust is the particle size emitted during wood processing, which varies according to the type of wood and its treatment. Aerodynamic diameter of the particles is generally in the range of 10 to 30 m, which classifies them into an extra thoracic fraction (penetrating head area) or thoracic fraction (penetrating the trachea bronchial area). Percentage of respirable fraction is usually 15–20%. When setting the NDS value for wood dusts, data from a cross-sectional survey of 161 people employed in wood dust exposure in 54 furniture companies were used. Nasal patency was examined after exposure to mixed wood dust at a low concentration (0.17–0.74 mg/m3), mean (0.74–1.42 mg/m3) and high (1.42 mg/m3). With regard to nasal patency before commencement of the work, exposure to medium and high concentration of wood dust significantly increased nasal congestion, reduced nasal cavity capacity and reduced nasal cross-sectional area as a result of 4–7 hours of exposure. There was a statistically significant relationship between the concentration of wood dust and nasal obstruction grade determined by the method of acoustic rhinometry and subjective assessment. These symptoms also occurred when dust concentrations were small, but these symptoms were not statistically significant. Furthermore, patients in the control group had significant differences in nasal passivity before commencement of work compared to the post-work period, thus undermining the observed changes at low concentrations (0.17–0.74 mg/m3) of wood dust. Taking into account the above data as well as socioeconomic factors discussed with wood industry representatives in Poland, the Interdepartmental Commission on NDS and NDN at its 84th meeting on November 4, 2016, adopted a concentration of 3 mg/m3 for the maximum permissible concentration (NDS) for the inhalable fraction of all wood dust. Socioeconomic considerations were also taken into account in determining BOELV value for the inhalable wood dust fraction (3 mg/m3) in the European Union. The adoption of this value without distinction for hardwood and softwood is a compromise between current NDS values for wood dust with the exception of oak and beech dusts (4 mg/m3) and beech and oak dust (2 mg/m3). The proposed value of NDS is at the level proposed by the European Commission for BOELV for the hardwood dust inhalable fraction (3 mg/m3), which takes into account socio-economic conditions of companies. Due to the fact that wood dusts are carcinogenic, mutagenic and cause pneumoconiosis, the determination of NDSCh values is unjustified. It is proposed to mark the wood dust with notation "Carc. 1”– category 1 carcinogen, according to the classification of the International Agency for Research on Cancer, and with letter “A” because of possible sensitization.
Źródło:
Podstawy i Metody Oceny Środowiska Pracy; 2017, 3 (93); 17-93
1231-868X
Pojawia się w:
Podstawy i Metody Oceny Środowiska Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies