Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Baire property" wg kryterium: Temat


Wyświetlanie 1-6 z 6
Tytuł:
Strong meager properties for filters
Autorzy:
Laflamme, Claude
Powiązania:
https://bibliotekanauki.pl/articles/1208397.pdf
Data publikacji:
1995
Wydawca:
Polska Akademia Nauk. Instytut Matematyczny PAN
Tematy:
filter
meager
Baire property
Opis:
We analyze several "strong meager" properties for filters on the natural numbers between the classical Baire property and a filter being $F_σ$. Two such properties have been studied by Talagrand and a few more combinatorial ones are investigated. In particular, we define the notion of a P⁺-filter, a generalization of the traditional concept of P-filter, and prove the existence of a non-meager P⁺-filter. Our motivation lies in understanding the structure of filters generated by complements of members of a maximal almost disjoint family.
Źródło:
Fundamenta Mathematicae; 1994-1995, 146, 3; 283-293
0016-2736
Pojawia się w:
Fundamenta Mathematicae
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Marczewski-Burstin-like characterizations of σ-algebras, ideals, and measurable functions
Autorzy:
Brown, Jack
Elalaoui-Talibi, Hussain
Powiązania:
https://bibliotekanauki.pl/articles/965993.pdf
Data publikacji:
1999
Wydawca:
Polska Akademia Nauk. Instytut Matematyczny PAN
Tematy:
Baire property
Marczewski measurable
Lebesgue measurable
Opis:
ℒ denotes the Lebesgue measurable subsets of ℝ and $ℒ_0$ denotes the sets of Lebesgue measure 0. In 1914 Burstin showed that a set M ⊆ ℝ belongs to ℒ if and only if every perfect P ∈ ℒ\$ℒ_0$ has a perfect subset Q ∈ ℒ\$ℒ_0$ which is a subset of or misses M (a similar statement omitting "is a subset of or" characterizes $ℒ_0$). In 1935, Marczewski used similar language to define the σ-algebra (s) which we now call the "Marczewski measurable sets" and the σ-ideal $(s^0)$ which we call the "Marczewski null sets". M ∈ (s) if every perfect set P has a perfect subset Q which is a subset of or misses M. M ∈ $(s^0)$ if every perfect set P has a perfect subset Q which misses M. In this paper, it is shown that there is a collection G of $G_δ$ sets which can be used to give similar "Marczewski-Burstin-like" characterizations of the collections $B_w$ (sets with the Baire property in the wide sense) and FC (first category sets). It is shown that no collection of $F_σ$ sets can be used for this purpose. It is then shown that no collection of Borel sets can be used in a similar way to provide Marczewski-Burstin-like characterizations of $B_r$ (sets with the Baire property in the restricted sense) and AFC (always first category sets). The same is true for U (universally measurable sets) and $U_0$ (universal null sets). Marczewski-Burstin-like characterizations of the classes of measurable functions are also discussed.
Źródło:
Colloquium Mathematicum; 1999, 82, 2; 277-286
0010-1354
Pojawia się w:
Colloquium Mathematicum
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
On some subclasses of the family of Darboux Baire 1 functions
Autorzy:
Ivanova, G.
Wagner-Bojakowska, E.
Powiązania:
https://bibliotekanauki.pl/articles/255127.pdf
Data publikacji:
2014
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
Darboux property
Baire property
I-approximate continuity
quasi-continuity
strong Świątkowski property
Opis:
We introduce a subclass of the family of Darboux Baire 1 functions f : R → R modifying the Darboux property analogously as it was done by Z. Grande in [On a subclass of the family of Darboux functions, Colloq. Math. 17 (2009), 95–104], and replacing approximate continuity with I-approximate continuity, i.e. continuity with respect to the I-density topology. We prove that the family of all Darboux quasi-continuous functions from the first Baire class is a strongly porous set in the space DB1 of Darboux Baire 1 functions, equipped with the supremum metric.
Źródło:
Opuscula Mathematica; 2014, 34, 4; 777-788
1232-9274
2300-6919
Pojawia się w:
Opuscula Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Ramsey, Lebesgue, and Marczewski sets and the Baire property
Autorzy:
Reardon, Patrick
Powiązania:
https://bibliotekanauki.pl/articles/1205503.pdf
Data publikacji:
1996
Wydawca:
Polska Akademia Nauk. Instytut Matematyczny PAN
Tematy:
Ramsey set
Marczewski set
perfect set
measurable set
Baire property
density topology
Ellentuck topology
σ-algebra
Opis:
We investigate the completely Ramsey, Lebesgue, and Marczewski σ-algebras and their relations to the Baire property in the Ellentuck and density topologies. Two theorems concerning the Marczewski σ-algebra (s) are presented.

 THEOREM. In the density topology D, (s) coincides with the σ-algebra of Lebesgue measurable sets.

 THEOREM. In the Ellentuck topology on $[ω]^ω$, $(s)_0$ is a proper subset of the hereditary ideal associated with (s).

 We construct an example in the Ellentuck topology of a set which is first category and measure 0 but which is not $B_r$-measurable. In addition, several theorems concerning perfect sets in the Ellentuck topology are presented. In particular, it is shown that there exist countable perfect sets in the Ellentuck topology.
Źródło:
Fundamenta Mathematicae; 1996, 149, 3; 191-203
0016-2736
Pojawia się w:
Fundamenta Mathematicae
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Integrable Functions Versus a Generalization of Lebesgue Points in Locally Compact Groups
Autorzy:
Basu, Sanji
Powiązania:
https://bibliotekanauki.pl/articles/972269.pdf
Data publikacji:
2013
Wydawca:
Uniwersytet Łódzki. Wydawnictwo Uniwersytetu Łódzkiego
Tematy:
Baire-property
Carathe odory function
demi-spheres
Haar measure
Kuratowski-Ulam theorem
Lebesgue density
Lebesgue set
Lebesgue class
locally compact groups
AMS Subject Classification. Primary 28A
Opis:
Here in this paper we intend to deal with two questions: How large is a “Lebesgue Class” in the topology of Lebesgue integrable functions, and also what can be said regarding the topological size of a “Lebesgue set” in \( \mathbb{R} \)?, where by a Lebesgue class (corresponding to some \( x \in \mathbb{R} \)) is meant the collection of all Lebesgue integrable functions for each of which the point \( x \) acts as a common Lebesgue point, and, by a Lebesgue set (corresponding to some Lebesgue integrable function \( f \)) we mean the collection of all ebesgue points of \( f \). However, we answer these two questions in a more general setting where in place of Lebesgue integration we use abstract integration in locally compact Hausdorff topological groups.
Źródło:
Acta Universitatis Lodziensis. Folia Mathematica; 2013, 18; 21-32
2450-7652
Pojawia się w:
Acta Universitatis Lodziensis. Folia Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Baire measurability of \((M,N)\)-Wright convex functions
Autorzy:
Lewicki, Michał
Powiązania:
https://bibliotekanauki.pl/articles/746698.pdf
Data publikacji:
2008
Wydawca:
Polskie Towarzystwo Matematyczne
Tematy:
Wright convexity
functional inequalities
regularity property
Baire measurable functions
continuous functions
Opis:
Let \(I \subset \mathbb{R}\) be an open interval and \(M, N \colon I^2 \to I\) be means on \(I\). Let \(\varphi\colon I \to \mathbb{R}\) be a solution of the functional equation \[ \varphi(M (x, y)) + \varphi(N (x, y)) = \varphi(x) + \varphi(y),\quad x, y \in I \] We give sufficient conditions on \(M, N\) and the function \(\varphi\) such that for every Baire measurable solution \(f \colon I \to \mathbb{R}\) of the functional inequality \[ f (M (x, y)) + f (N (x, y)) \leq f (x) + f (y),\quad x, y \in I, \] the function \(f \circ \varphi^{-1} \colon \varphi(I) \to \mathbb{R}\) is convex.
Źródło:
Commentationes Mathematicae; 2008, 48, 1
0373-8299
Pojawia się w:
Commentationes Mathematicae
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-6 z 6

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies