We investigate the completely Ramsey, Lebesgue, and Marczewski σ-algebras and their relations to the Baire property in the Ellentuck and density topologies. Two theorems concerning the Marczewski σ-algebra (s) are presented.
THEOREM. In the density topology D, (s) coincides with the σ-algebra of Lebesgue measurable sets.
THEOREM. In the Ellentuck topology on $[ω]^ω$, $(s)_0$ is a proper subset of the hereditary ideal associated with (s).
We construct an example in the Ellentuck topology of a set which is first category and measure 0 but which is not $B_r$-measurable. In addition, several theorems concerning perfect sets in the Ellentuck topology are presented. In particular, it is shown that there exist countable perfect sets in the Ellentuck topology.
Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies
Informacja
SZANOWNI CZYTELNICY!
UPRZEJMIE INFORMUJEMY, ŻE BIBLIOTEKA FUNKCJONUJE W NASTĘPUJĄCYCH GODZINACH:
Wypożyczalnia i Czytelnia Główna: poniedziałek – piątek od 9.00 do 19.00