Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "1-2" wg kryterium: Temat


Tytuł:
1,2-Bezwodnik kwasu benzeno-1,2,4- -trikarboksylowego
Benzene-1,2,4-tricarboxylic acid 1,2-anhydride
Autorzy:
Pałaszewska-Tkacz, A.
Czerczak, S.
Powiązania:
https://bibliotekanauki.pl/articles/138045.pdf
Data publikacji:
2011
Wydawca:
Centralny Instytut Ochrony Pracy
Tematy:
1,2-bezwodnik kwasu benzeno-1,2,4- trikarboksylowego
NDS
substancja uczulająca
benzene-1,2,4-tricarboxylic acid 1,2-anhydride
OEL
sensitizer
Opis:
1,2-Bezwodnik kwasu benzeno-1,2,4-trikarboksylowego (bezwodnik trimelitowy, TMAN) jest białym, krystalicznym i bezzapachowym ciałem stałym otrzymywanym głównie w procesie utleniania pseudo-kumenu do kwasu trimelitowego, który następnie jest poddawany reakcji odwodnienia. Związek jest stosowany w syntezach plastyfikatorów żywic PCV, wykorzystywanych następnie do wytwarzania izolacji kabli elektrycznych, części samochodowych i aparatury medycznej, stosuje się go również w syntezie żywic poliestrowych używanych w produkcji wodnych i rozpuszczalnikowych farb i powłok (w tym powłok antykorozyjnych), a ponadto do produkcji żywic do wytwarzania powłok proszkowych oraz jako czynnik wiążący włókna szklane, piasek i inne kruszywa. Bezwodnik trimelitowy jest używany także jako plastyfikator materiałów wykorzystywanych do przechowywania i pakowania żywności. W 2000 r. ogólnoświatowa produkcja bezwodnika trimelitowego wynosiła nieco ponad 100 000 t, z czego około 65 000 t produkowano na terenie Stanów Zjednoczonych. Z dostępnych danych wynika, że na terenie Wspólnoty Europejskiej związek jest produkowany przez dwie firmy zlokalizowane na terenie Wielkiej Brytanii i Włoch, natomiast w USA jedna firma zajmuje się jego produkcją. Podczas narażenia zawodowego na bezwodnik trimelitowy większe znaczenie ma droga inhalacyjna niż kontakt ze skórą. Na podstawie wyników badań na zwierzętach, prowadzonych zarówno w warunkach narażenia ostre-go, jak i przewlekłego, wykazano, że bezwodnik trimelitowy jest związkiem o stosunkowo małej tok-syczności, bez względu na drogę podania. Natomiast wyniki dostępnych badań epidemiologicznych i badań na zwierzętach potwierdzają uczulające działanie związku przez drogi oddechowe i w kontak-cie ze skórą oraz częściowo jego działanie drażniące na drogi oddechowe. Eksperci UE zaklasyfikowali bezwodnik trimelitowy do substancji działajacych drażniąco na drogi oddechowe, stwarzających ryzy-ko poważnego uszkodzenia oczu oraz mogących powodować uczulenie w następstwie narażenia drogą oddechową i w kontakcie ze skórą. W Polsce nie ustalono normatywów higienicznych dla tego związku. Proponuje się przyjęcie stężenia 0,04 mg/m3 za wartość najwyższego dopuszczalnego stężenia (NDS) bezwodnika trimelitowego oraz stężenia 0,08 mg/m3 za wartość najwyższego dopuszczalnego stężenia chwilowego (NDSCh) przez analogię do wartości normatywnych przyjętych w większości państw UE. Proponuje się także oznako-wanie substancji w wykazie literami „A” – substancja uczulająca i „I” – substancja drażniąca.
Benzene-1,2,4-tricarboxylic acid 1,2-anhydride is a white crystal solid produced by the oxidation of pseudocumene to form trimellitic acid, this being subsequently dehydrated. It is mainly used in the synthesis of plasticizers for polyvinyl chloride resins, used subsequently in the production of wire and cable coatings, car interior linings and medical equipment parts. Moreover, it is used in the production of polyester resins for water and solvent-based paints and coatings (including anticor-rosive ones), and resins for the production of powder coatings. Trimellitic anhydride is also used as a binding agent for glass fibres, sand and other aggregates and as a plasticizer in materials used to store and cover food. In 2000, the worldwide production of trimellitic anhydride was over 100 000 tonnes, including 65 000 tonnes produced in the USA. According to available data, there are two producers of tri-mellitic anhydride within the EU, located in the UK and Italy, and one in the USA. As far as occupational exposure to trimellitic anhydride is concerned, the inhalation route is more significant than dermal exposure. Results of environmental animal studies revealed that trimellitic anhydride is a chemical of rela-tively low toxicity, regardless of exposure length and route. Results of both epidemiological and animal studies confirm sensitizing activity of this chemical in the contact with skin and respiratory tract and partly its irritating activity to the respiratory system. EU experts have classified trimellit-ic anhydride as a substance irritating to the respiratory system, posing a risk of serious damage to the eyes and potentially causing sensitization by inhalation and skin contact. In Poland there is no OEL value. Because of shortage of data suitable for establishing OEL, it has been proposed to accept the values of 0.04 mg/m3 as TWA and 0.08 mg/m3 as STEL, similarly to most European countries. It has been also proposed to label the substance with ‘A’ (sensitizer) and ‘I’ (irritant) letters in the Polish OEL list.
Źródło:
Podstawy i Metody Oceny Środowiska Pracy; 2011, 3 (69); 5-29
1231-868X
Pojawia się w:
Podstawy i Metody Oceny Środowiska Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The 1,2,3-Conjecture and 1,2-Conjecture for sparse graphs
Autorzy:
Cranston, Daniel W.
Jahanbekam, Sogol
West, Douglas B.
Powiązania:
https://bibliotekanauki.pl/articles/30148718.pdf
Data publikacji:
2014-11-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
reducible configuration
discharging method
1, 2, 3-Conjecture
1, 2-Conjecture
Opis:
The 1, 2, 3-Conjecture states that the edges of a graph without isolated edges can be labeled from {1, 2, 3} so that the sums of labels at adjacent vertices are distinct. The 1, 2-Conjecture states that if vertices also receive labels and the vertex label is added to the sum of its incident edge labels, then adjacent vertices can be distinguished using only {1, 2}. We show that various configurations cannot occur in minimal counterexamples to these conjectures. Discharging then confirms the conjectures for graphs with maximum average degree less than 8/3. The conjectures are already confirmed for larger families, but the structure theorems and reducibility results are of independent interest.
Źródło:
Discussiones Mathematicae Graph Theory; 2014, 34, 4; 769-799
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
On minimum intersections of certain secondary dominating sets in graphs
Autorzy:
Kosiorowska, Anna
Michalski, Adrian
Włoch, Iwona
Powiązania:
https://bibliotekanauki.pl/articles/29519420.pdf
Data publikacji:
2023
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
dominating set
2-dominating set
(1, 2)-dominating set
proper (1, 2)-dominating set
domination number
(1,2)-intersection index
Opis:
In this paper we consider secondary dominating sets, also named as (1,k)-dominating sets, introduced by Hedetniemi et al. in 2008. In particular, we study intersections of the (1, 1)-dominating sets and proper (1, 2)-dominating sets. We introduce (1,2̅)-intersection index as the minimum possible cardinality of such intersection and determine its value for some classes of graphs.
Źródło:
Opuscula Mathematica; 2023, 43, 6; 813-827
1232-9274
2300-6919
Pojawia się w:
Opuscula Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
1,1,2-Trichloroetan
Autorzy:
Bystry, K
Stetkiewicz, J
Powiązania:
https://bibliotekanauki.pl/articles/138312.pdf
Data publikacji:
2012
Wydawca:
Centralny Instytut Ochrony Pracy
Tematy:
1,1,2-trichloroetan
NDS
narażenie zawodowe
1,1,2-trichloroethane
OEL
occupational exposure
Opis:
1,1,2-Trichloroetan (1,1,2- TCE) jest bezbarwną, niepalną cieczą o słodkim zapachu, zbliżonym do zapachu chloroformu. Jest stosowany jako rozpuszczalnik: tłuszczów, wosków, naturalnych żywic i alkaloidów oraz wielu innych materiałów organicznych, a także jako produkt pośredni (półprodukt) w produkcji: chlorku winylidenu, rurek teflonowych i klejów. Powyżej 95% tego związku produkowanego w USA zużywa się do produkcji chlorku winylidenu. Według danych Głównej Inspekcji Sanitarnej w Polsce na 1,1,2- -trichloroetan nie było w 2010 r. narażonych pracowników powyżej wartości NDS (45 mg/m3). Mediana dawki śmiertelnej 1,1,2-trichloroetanu dla szczurów po podaniu do żołądka (DL50) wynosi – 837 mg/kg, po narażeniu inhalacyjnym (CL50) – 9000 mg/m3. U królików wartość DL50 wynosi 5,38 g/kg po podaniu przez skórę. Substancja działa drażniąco na: skórę, oczy, górne drogi oddechowe oraz żołądek. W badaniach na zwierzętach wykazano niewielkie właściwości immunomodulujące 1,1,2-trichloroetanu. Związek ten jest dobrze wchłaniany do organizmu wszystkimi drogami narażenia. 1,1,2-Trichloroetan jest metabolizowany głównie w wątrobie i wydalany z organizmu z: powietrzem wydychanym, moczem oraz kałem. 1,1,2-Trichloroetan nie wykazywał działania mutagennego dla szczepów Salmonella Typhimurium: TA1535, TA1537, TA1538, TA98, TA100 zarówno bez aktywacji metabolicznej, jak i z aktywacją metaboliczną. Działanie mutagenne 1,1,2-trichloroetanu wykazano u Saccharomyces cerevisiae. Związek ten powodował zwiększenie liczby mikrojąder w ludzkich limfocytach (w warunkach in vitro). Nie znaleziono danych wskazujących na działanie rakotwórcze 1,1,2-trichloroetanu na ludzi. Istnieją ograniczone dowody na potwierdzenie jego rakotwórczego działania na zwierzęta. 1,1,2-Trichloroetan podawany myszom B6C3F1 w dawkach 195 lub 390 mg/kg przez 78 tygodni wywołał raki wątroby. Chromochłonne nowotwory nadnerczy wykazano tylko po podaniu 1,1,2-trichloroetanu w dawce 390 mg/kg. U szczurów 1,1,2-trichloroetan nie powodował istotnego zwiększenia liczby nowotworów. W dostępnym piśmiennictwie i specjalistycznych bazach danych nie znaleziono informacji dotyczących działania embriotoksycznego, teratogennego i wpływu 1,1,2-trichloroetanu na rozrodczość ludzi. Nie wykazano również działania teratogennego 1,1,2-trichloroetanu na myszy. W IARC zaklasyfikowano 1,1,2-trichloroetan do grupy 3. związków kancerogennych (substancja nie może być sklasyfikowana pod względem działania rakotwórczego na ludzi). Wartość NOAEL dla 1,1,2-trichloroetanu ustalono na podstawie wyników 90-dniowych badań na samcach i samicach myszy, którym podawano związek w wodzie do picia. Skutkiem krytycznym było zwiększenie aktywności fosfatazy zasadowej w surowicy krwi u samic i samców myszy, którym podawano największą dawkę 1,1,2-trichloroetanu, tj. odpowiednio dla samic 384 oraz samców 305 mg/kg m.c./dzień. Zmian aktywności fosfatazy zasadowej w surowicy krwi samic nie obserwowano po podaniu dawki 44 mg/kg m.c./dzień związku, a samcom dawki 46 mg/kg m.c./dzień. Dawkę 44 mg/kg m.c./dzień wyznaczoną u samic przyjęto za wartość NOAEL i po zastosowaniu odpowiednich współczynników niepewności zaproponowano przyjęcie stężenia 40 mg/m3 za wartość NDS 1,1,2-trichloroetanu. Substancję należy oznaczyć literami: Carc. Cat. 3 – substancja o możliwym działaniu rakotwórczym na człowieka. Z uwagi na fakt, iż 1,1,2-trichloroetan jest wchłaniany przez skórę, należy wprowadzić dodatkowe oznaczenie literami „Sk”. Nie ma podstaw merytorycznych do ustalenia wartości najwyższego dopuszczalnego stężenia chwilowego (NDSCh) oraz dopuszczalnego stężenia w materiale biologicznym (DSB) 1,1,2-trichloroetanu.
1,1,2-Trichloroethane (1,1,2 - TCE) is a colorless, inflammable liquid with a sweet odor, similar to the smell of chloroform. It is used as a solvent for fats, waxes, natural resins, alkaloids, and many other organic materials. It is also used as an intermediate in the production of vinylidene chloride, Teflon tubing and adhesives. Over 95% of the compound produced in the USA is used in the production of vinylidene chloride. According to the Chief Sanitary Inspectorate in Poland, 1,1,2-trichloroethane workers have not been exposed to values over the TWA (45 mg/m3). The median lethal dose of 1,1,2-trichloroethane for rats after administration to the stomach (LD50) is 837 mg/kg, after inhalation exposure (LC50) 9000 mg/m3. LD50 value for rabbits is 5.38 g / kg dose through the skin. The substance is irritating to the skin, eyes, upper respiratory tract and stomach. Animal studies showed slight immunomodulatory properties of 1,1,2-trichloroethane. This chemical compound is well absorbed into the body from all routes of exposure. 1,1,2-Trichloroethane is metabolized primarily in the liver and excreted from the body with the exhaled air, urine and faeces. 1,1,2-Trichloroethane was not mutagenic to Salmonella typhimurium TA1535, TA1537, TA1538, TA98, TA100, either with or without metabolic activation. Mutagenicity of 1,1,2-trichloroethane was found in Saccharomyces cerevisiae. This compound was shown to increase the number of micronuclei in human lymphocytes (in vitro). There is no evidence of carcinogenic activity of 1,1,2- -trichloroethane in humans. There is limited evidence of its carcinogenicity in animals. 1,1,2-Trichloroethane administered to B6C3F1 mice at doses of 195 or 390 mg/kg for 78 weeks caused liver cancer. Chromaffin adrenal tumors were observed only after administration of 1,1,2-trichloroethane at a dose of 390 mg/kg. In rats, 1,1,2-trichloroethane does not cause a significant increase in the number of cancers. Information about embryotoxic, teratogenic and reproductive toxicity of 1,1,2-trichloroethane for humans has not been found in the available literature and specialist databases. No teratogenic effects were found for 1,1,2-trichloroethane in mice, either. The IARC classified 1,1,2-trichloroethane to group 3 of carcinogenic compounds (a substance cannot be classified in terms of its carcinogenicity to humans). NOAEL for 1,1,2-trichloroethane was established on the basis of a 90-day study in male and female mice given the compound in drinking water. The critical effect was the increase in alkaline phosphatase in serum in male and female mice given the highest dose of 1,1,2-trichloroethane, respectively, for females and males, 384 and 305 mg/kg bw/day. No changes in alkaline phosphatase in the serum of females were observed after a dose of 44 mg/kg/day of the compound, or in the serum of females after a dose of 46 mg/kg bw/day. The dose of 44 mg/kg bw/day in females was taken as the NOAEL and after applying appropriate uncertainty factors it is proposed to adopt it for the value of 40 mg/m3 TWA 1,1,2-trichloroethane. The substance should be labeled Carc. Cat. 3 - a possible carcinogen to humans. As 1,1,2-trichloroethane is absorbed through the skin, the "Sk" notation should be used. There is no factual basis for determining the maximum instantaneous concentration (TWA) or the admissible concentration in biological material (DSB).
Źródło:
Podstawy i Metody Oceny Środowiska Pracy; 2012, 3 (73); 137-155
1231-868X
Pojawia się w:
Podstawy i Metody Oceny Środowiska Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
1,2- Dichloroetan. Dokumentacja proponowanych dopuszczalnych wielkości narażenia zawodowego
1,2- Dichloroethane. Documentation of proposed values of an occupational exposure limit (OEL)
Autorzy:
Soćko, R.
Powiązania:
https://bibliotekanauki.pl/articles/137246.pdf
Data publikacji:
2014
Wydawca:
Centralny Instytut Ochrony Pracy
Tematy:
1,2-dichloroetan
NDS
narażenie zawodowe
1,2-dichloroethane
MAK
occupational exposure
Opis:
1,2-Dichloroetan (1,2-DCE) jest bezbarwną cieczą stosowaną m.in. do syntezy: chlorku winylidenu, 1,1,1-trichloroetanu, trichloroetylenu, rozpuszczalników chlorowanych, a także ekstrakcji tłuszczów i olejów oraz jako zmywacz, rozpuszczalnik m.in. żywic, asfaltu i kauczuku. Ponadto 1,2-dichloroetan jest składnikiem farb i pestycydów stosowanych do zwalczania szkodników zbóż oraz gleby. W Unii Europejskiej stosowanie 1,2-dichloroetanu jako pestycydu jest zabronione. W Polsce 1,2-dichloroetan jest produkowany przez firmę ANWIL S.A. z Włocławka. Dostarczone przez ten zakład dane dotyczące stężeń 1,2-dichloroetanu w powietrzu środowiska pracy w poszczególnych jednostkach produkcyjnych w latach 2010-2013 wskazują na brak przekroczeń obowiązującej wartości najwyższego dopuszczalnego stężenia (ND) 1,2-dichloroetanu wynoszącej 50 mg/m³. Według Centralnego Rejestru Danych o Narażeniu na Substancje, Preparaty, Czynniki lub Procesy Technologiczne o Działaniu Rakotwórczym lub Mutagennym, prowadzonego w Instytucie Medycyny Pracy w Łodzi, w latach 2005-20012 narażenie zawodowe w Polsce na 1,2-dichloroetanu miało miejsce w kilkudziesięciu zakładach pracy. Na posiedzeniu Komitetu Doradczego ds. Bezpieczeństwa i Zdrowia w Miejscu Pracy (ACSH, Advisory Committee on Safety and Health at Work) w listopadzie 2013 r. dyskutowano propozycję wartości wiążącej(BOELV) dla 1,2-dichloroetanu na poziomie 8,14 mg/m³ (2 ppm). Wyniki obserwacji klinicznych osób narażonych na 1,2-dichloroetan wskazują na działanie drażniące związku na: błony śluzowe, układ nerwowy i układ sercowo-naczyniowy. Przyjęcie dużych dawek/stężeń 1,2-dichloroetanu powoduje rozwój nasilonych objawów toksyczności ostrej, kończącej się często śmiercią z powodu arytmii serca. Najczęściej zgłaszanymi objawami są: bóle i zawroty głowy, ogólne osłabienie, nudności, wymioty krwią i żółcią, rozszerzone źrenice, ostry ból w podbrzuszu i uczucie duszności w klatce piersiowej. W badaniach w warunkach in vitro i in vivo stwierdzono aktywność mutagenną 1,2-dichloroetanu. Na podstawie wyników badań na gryzoniach wykazano dużą różnorodność nowotworów po narażeniu drogą pokarmową i inhalacyjną na 1,2-dichloroetan. U szczurów notowano wzrost przypadków mięsaka naczyniowego różnych narządów (śledziony, wątroby, trzustki i nadnerczy), wzrost przypadków raka płaskonabłonkowego przedżołądka, gruczolakoraka i włókniakomięsaka sutka. U myszy występował wzrost częstotliwości występowania: raka wątrobowo-komórkowego, gruczolaka i raka płuc, gruczolakoraka i włókniakomięsaka sutka oraz gruczolakoraka macicy, a także chłoniaków złośliwych. Krytycznym skutkiem działania 1,2-dichloroetanu jest działanie układowe: zaburzenia funkcjonowania układu nerwowego, upośledzenie funkcji wątroby i nerek, dolegliwości ze strony układu pokarmowego. W celu ustalenia wartości najwyższego dopuszczalnego stężenia (NDS) 1,2-dichloroetanu zrezygnowano z wyników badań na zwierzętach narażanych na związek drogą inhalacyjną, gdyż były one przeprowadzone w latach 50. i nie spełniają przyjętych obecnie wymagań w procedurach badawczych. Do wyznaczenia wartości NDS 1,2-dichloroetanu uwzględniono dane pochodzące z wyników badania przeprowadzonego na szczurach, którym podawano związek w oleju kukurydzianym przez 90 dni. Na podstawie ustalonej w tym doświadczeniu wartości NOAEL dla działania układowego, zaproponowano przyjęcie wartości NDS na poziomie 10 mg/m³. Zaproponowano również ustalenie wartości najwyższego dopuszczalnego stężenia chwilowego (NDSCh) 1,2-dichloroetanu na poziomie 20 mg/m3. Zaproponowane wartości normatywów higienicznych powinny zabezpieczyć pracowników przed działaniem drażniącym związku oraz przed potencjalnym jego działaniem układowym. Ze względu na stosunkowo dużą szybkość przenikania 1,2-dichloroetanu przez skórę, wynoszącą 2,8 mg/cm2/h,a także na udowodnione wchłanianie przez skórę u ludzi, proponuje się także wprowadzenie oznakowania skóra, a ze względu na działanie drażniące związku oznakowanie literą I. 1,2-Dichloroetan należy również oznakować ze względu na zaklasyfikowanie go do grupy rakotwórczości Carc. 1B – substancja rakotwórcza kategorii 1.B.
1,2- Dichloroethane is a colorless liquid with an odor typical of chlorinated hydrocarbons. 1,2- Dichloroethane has been used as an intermediate in the manufacture of vinyl chloride; as a scavenger in leaded gasoline; and a solvent. It is also used in paint removers, wetting and penetrating agents, ore flotation, and soaps and scouring compounds. Animal studies have uniformly indicated liver and kidney injury from exposure to 1,2-dichloroethane. 1,2-Dichloroethane vapor is irritating to the eyes, nose, throat (mucous membranes) and skin. Human exposure to 1,2- dichloroethane results in CNS depression. This paper reports symptoms such as nausea, vomiting, and dizziness. 1,2-Dichloroethane has been classified by the International Agency for Research on Cancer as possibly carcinogenic to humans based on limited human epidemiological data and sufficient animal toxicity (IARC category 2b). Under the classification and labelling legislation in Europe it is classified as a carcinogen Cat IB. Information about the hazard from 1,2- dichloroethane is limited. Animal toxicity studies have shown a range of tumors induced from ingested 1,2-dichloroethane. Howrever, human epidemiological evidence for occupational exposure causing cancer is w^eak. There is no basis to identify a suitable risk estimate. To determine MAC value for 1,2-dichloroethane systemic effect was adopted as a critical effect. The Expert Group for Chemical Agents has recommended TWA of 10 mg/m3 and STEL of 20 mg/m3. It has been also proposed to label the substance with "I" (irritant), Skin (substance can penetrate skin) and a carcinogen Cat. IB.
Źródło:
Podstawy i Metody Oceny Środowiska Pracy; 2014, 4 (82); 23-65
1231-868X
Pojawia się w:
Podstawy i Metody Oceny Środowiska Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Różnice spektralne fluorescencji produktów reakcji wybranych aminokwasów z DFO, 1,2-indanedione oraz 1,2-indanedione z chlorkiem cynku
Spectral differences in fluorescence of reaction products of selected amino acids with DFO, 1,2-indanedione and 1,2-indanedione with zinc chloride
Autorzy:
Szczepański, Tomasz
Więckiewicz, Urszula
Klemczak, Krzysztof
Chyczewska, Anna
Powiązania:
https://bibliotekanauki.pl/articles/499809.pdf
Data publikacji:
2013
Wydawca:
Centralne Laboratorium Kryminalistyczne Policji
Tematy:
DFO
1,2-indanedione
1,2-indanedione+ZnCl2
obrazowanie hiperspektraln
aminokwasy
powierzchnie chłonne
1,2-indanedione+ZnCl
hyperspectral imaging
amino acids
absorptive surfaces
Opis:
W artykule przedstawiono charakterystykę widmową fluorescencji produktów reakcji wybranych dziewięciu aminokwasów z DFO, 1,2-indanedione oraz 1,2-indanedione z chlorkiem cynku. W badaniach wykorzystano podłoża chłonne w postaci arkuszy papieru biurowego i bibuły filtracyjnej. Badaniom poddano próbki przechowywane w trzech przedziałach czasowych. Dane spektralne otrzymano przy wykorzystaniu systemu makroskopowego obrazowania hiperspektralnego. Otrzymane wyniki potwierdzają, że reakcja chemiczna DFO, 1,2-indanedione i 1,2-indanedione+ZnCl2 zachodzi z grupami aminowymi aminokwasów. Grupa boczna aminokwasów w niewielkim stopniu wpływa na charakterystykę spektralną. Stwierdzono różnice w charakterystyce widmowej emitowanej fluorescencji badanych próbek w funkcji czasu.
The paper presents fluorescence spectral characteristics of reaction products of chosen nine amino acids with DFO, 1,2-indanedione and 1,2-indanedione with zinc chloride. Absorptive substrates, such as sheets of paper and filtration paper were used in examination. The examination involved samples, which were stored over three time intervals. Spectral data were obtained with the use of macroscopic hyperspectral imaging system. Findings confirm that a chemical reaction between DFO, 1,2-indanedione and 1,2-indanedione+ZnCl2 takes place with amino groups of amino acids. A pendant group of amino acids only slightly influences the spectral characteristics. The authors concluded on the differences in spectral characteristics of the fluorescence emitted from examined samples over time.
Źródło:
Problemy Kryminalistyki; 2013, 282; 2-7
0552-2153
Pojawia się w:
Problemy Kryminalistyki
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
1,2-Dibromoetan
Autorzy:
Świdwińska-Gajewska, A
Czerczak, S.
Powiązania:
https://bibliotekanauki.pl/articles/137340.pdf
Data publikacji:
2012
Wydawca:
Centralny Instytut Ochrony Pracy
Tematy:
1,2-dibromoetan
narażenie zawodowe
NDS
1,2-dibromoethane
occupational exposure
MAC value
Opis:
1,2-Dibromoetan (DEB) jest bezbarwną cieczą o słodkawym zapachu, podobnym do chloroformu. Jest zaklasyfikowany jako substancja rakotwórcza kategorii 2., która działa toksycznie: przez drogi oddechowe, w kontakcie ze skórą i po połknięciu, a także drażniąco na: oczy, drogi oddechowe i skórę oraz jest niebezpieczna dla środowiska. 1,2-Dibromoetan otrzymuje się w procesie bromowania etylenu, a także reakcji acetylenu i kwasu bromowodorowego. Związek był stosowany jako środek usuwający: ołów, pestycyd oraz fumigant do odymiania gleby i zbóż. Obecnie substancję tę używa się jako półprodukt w syntezie chemicznej oraz rozpuszczalnik: żywic, gum i wosków. Z danych zebranych przez Centralny Rejestr Danych o Narażeniu na Substancje, Preparaty, Czynniki lub Procesy Technologiczne o Działaniu Rakotwórczym lub Mutagennym wynika, że narażenie w Polsce na 1,2-dibromoetan występuje głównie wśród pracowników laboratoryjnych: uczelni wyższych i zakładów chemicznych. W 2010 r. zarejestrowano 336 osób pracujących w narażeniu na ten związek w 10 zakładach. W Centralnym Rejestrze nie ma informacji o wielkości narażenia (IMP 2011). Według danych Głównej Inspekcji Sanitarnej w 2010 r. nie było pracowników narażonych na 1,2-dibromoetan powyżej wartości najwyższego dopuszczalnego stężenia (NDS), czyli stężenia 0,5 mg/m3 (GIS 2010). 1,2-Dibromoetan może działać toksycznie po narażeniu drogą: inhalacyjną, pokarmową oraz w kontakcie ze skórą. Działa także silnie drażniąco na: oczy, skórę i drogi oddechowe. Pierwsze objawy zatrucia u ludzi występują ze strony układu pokarmowego, a następnie obserwowano: żółtaczkę, uszkodzenia wątroby, nerek i zahamowanie ośrodkowego układu nerwowego (OUN). Narażenie inhalacyjne może prowadzić do zapalenia i ciężkiego uszkodzenia płuc. U zwierząt narażenie na 1,2-dibromoetan wywołuje przede wszystkim zmiany w obrębie układu oddechowego (jamy nosowej, tchawicy i płuc), a także w: wątrobie, nerkach, nadnerczach i jądrach. Związek działa mutagennie i genotoksycznie, co potwierdzają liczne testy przeprowadzone na bakteriach i komórkach zwierząt w badaniach w warunkach in vitro i In vivo. 1,2-Dibromoetan może wpływać na rozrodczość. U pracowników narażonych na 1,2-dibromoetan zaobserwowano zmiany w jakości nasienia. U zwierząt związek ten wpływał nie tylko na spermatogenezę, lecz także na cykl rujowy. Zaobserwowano również objawy działania embriotoksycznego i teratogennego związku u szczurów i myszy. Działanie rakotwórcze 1,2-dibromoetanu na zwierzęta potwierdzono w licznych eksperymentach, podając zwierzętom substancję różnymi drogami. Drogą dożołądkową 1,2-dibromoetan indukował powstawanie nowotworów w: przedżołądku, płucach i układzie krążenia. Związek podany inhalacyjnie wywoływał nowotwory: jamy nosowej, płuc i układu krążenia, a podany przez skórę: nowotwory skóry i płuc. 1,2-Dibromoetan w organizmie jest metabolizowany na szlaku oksydacyjnym z udziałem cytochromu P450 lub koniugacji za pośrednictwem S-transferazy glutationowej. Metabolity wydają się być odpowiedzialne w dużej mierze za działanie toksyczne i rakotwórcze tego związku, głównie przez kowalencyjne wiązanie z kwasami nukleinowymi i białkami. Za podstawę do wyznaczenia wartości NDS przyjęto skutek działania rakotwórczego w badaniu inhalacyjnym na myszach i szczurach. Wartość NDS wyliczona na podstawie ryzyka jednostkowego oszacowanego przez ekspertów EPA wynosi 0,6 (mg/m3)-1. Proponuje się zmniejszenie obowiązującej wartości NDS 1,2-dibromoetanu z 0,5 do 0,01 mg/m3. Nie ma podstaw do zaproponowania wartości najwyższego dopuszczalnego stężenia chwilowego (NDSCh) oraz dopuszczalnego stężenia w materiale biologicznym (DSB) 1,2-dibromoetanu. Jednocześnie proponuje się pozostawienie dotychczasowego oznakowania 1,2-dibromoetanu: „Rakotw. Kat. 2.”, „Ft”, „I” i „Sk”.
1,2-Dibromoethane (DEB) is a colorless liquid with a sweet odor similar to chloroform. It is classified as a carcinogen category 2, which is toxic by inhalation, in contact with skin and if swallowed. It is irritating to the eyes, respiratory system and skin, and is dangerous to the environment. 1,2-Dibromoethane is obtained by bromination of ethylene, and in the reaction of acetylene with hydrobromic acid. The chemical was used to removing lead, as a pesticide and as a fumigant for fumigation of soil and grain. Now it is used as an intermediate product in chemical synthesis, and as a solvent for resin, rubber and wax. Data collected by The Central Register of Data on Exposure to Substances, Preparations, Agents or Processes with Carcinogenic or Mutagenic Activity shows that in Poland exposure to 1,2-dibromoethane occurs mainly in laboratory workers at universities and chemical plants. In 2010, 336 people were recorded as exposed to this chemical in 10 plants. The Central Register has no information about the severity of the exposure (IMP 2011). According to the Chief Sanitary Inspectorate, in 2010, no workers were exposed to 1,2-dibromoethane at a concentration above the maximum admissible concentration (MAC) of 0.5 mg/m3 (GIS 2010). The first symptoms of poisoning in humans are gastrointestinal, followed by jaundice, liver and kidney damage, and inhibition of central nervous system. Inhalation exposure can result in inflammation and severe damage to the lungs. In animals, exposure to 1,2-dibromoethane primarily produces changes in the respiratory tract (nasal cavity, trachea and lungs), and also in the liver, kidneys, adrenal gland and testes. The compound shows mutagenic and genotoxic activity, which numerous in vitro and in vivo tests on bacteria and animal cells have confirmed. 1,2-Dibromoethane can affect reproduction. A change in the quality of the semen was noted in workers exposed o 1,2-dibromoethane. In animals, this compound affects not only the spermatogenesis, but also the estrous cycle. Signs of embryotoxic and teratogenic activity of the compound were also observed in rats and mice. Carcinogenicity of 1,2-dibromoethane in animals has been confirmed in numerous experiments, during which the animals were exposed to the substance in different ways. When given intragastrically, 1,2-dibromoethane caused cancer of the forestomach, lungs and circulatory system. Inhalation exposure to the compound resulted in tumors of the nasal cavity, lungs and circulatory system, while dermal exposure resulted in tumors of the skin and lungs. 1,2-Dibromoethane is metabolized in the body in the oxidative pathway by cytochrome P450 or by conjugation via glutathione S-transferase. The metabolites appear to be largely responsible for the toxic and carcinogenic effects of this compound, mainly by covalent binding to nucleic acids and proteins. The carcinogenic effect of inhalation exposure of mice and rats has been accepted as the basis for establishing MAC values. The MAC value of 0.6 (mg/m3)-1 has been calculated on the basis of the individual risk estimated by the experts of the EPA. A decrease in the current MAC value of 1,2-dibromoethane from 0.5 to 0.01 mg/m3 has been suggested. It does not seem reasonable to establish a maximum short-term exposure limit (STEL), or the biological exposure index (BEI) for 1,2-dibromoethane. At the same time, maintaining current 1,2-dibromoethane notations Carc. Cat. 2, Ft, I and Sk is suggested.
Źródło:
Podstawy i Metody Oceny Środowiska Pracy; 2012, 2 (72); 45-73
1231-868X
Pojawia się w:
Podstawy i Metody Oceny Środowiska Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Epoksydacja limonenu na wybranych katalizatorach tytanowo-silikalitowych
Limonene epoxidation on selected titanium-silicate catalyst
Autorzy:
Gawarecka, A.
Wróblewska, A.
Pełech, R.
Powiązania:
https://bibliotekanauki.pl/articles/134754.pdf
Data publikacji:
2015
Wydawca:
ADVSEO
Tematy:
epoksydacja limonenu
1,2-epoksyloimonen
nadtlenek wodoru
limonene epoxidation
1,2-epoxylimonene
hydrogen peroxide
Opis:
The studies on limonene epoxidation over the titanium silicate catalysts such as: TS-1, Ti-MWW, Ti-MCM-41 and Ti-SBA-15 with methanol or acetonitrile as solvents and with 30 wt% hydrogen peroxide as an oxidant were carried out. Limonene epoxidation was performed in the water bath, under reflux, at the temperature range of 70-100oC and during 60-180 minutes. After the appropriate reaction time a sample was taken from the reaction mixture and it was analyzed by the GC method. The best from the studied catalysts was TS-1. During the epoxidation with TS-1 catalyst, only 1,2-epoxylimonene was formed, without by-product, such as 1,2-epoxylimonene diol. During the epoxidations over other titanium silicate catalysts 1,2-epoxylimonene and its diol or only 1,2-epoxylimonene itself were formed. The aim of these studies was to determine to which compounds may limonene react at the reaction conditions and in the presence of titanium-silicate catalyst - qualitative research.
Źródło:
Technical Issues; 2015, 2; 9-15
2392-3954
Pojawia się w:
Technical Issues
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
1,2-Dimetoksyetan : dokumentacja proponowanych dopuszczalnych wielkości narażenia zawodowego
1,2-Dimethoxyethane : documentation of proposed values of occupational exposure limits (OELs)
Autorzy:
Kupczewska-Dobecka, M.
Powiązania:
https://bibliotekanauki.pl/articles/958177.pdf
Data publikacji:
2016
Wydawca:
Centralny Instytut Ochrony Pracy
Tematy:
1,2-dimetoksyetan
monoglim
NDS
narażenie zawodowe
1,2-dimethoxyethane
monoglym
MAC
occupational exposure
Opis:
1,2-Dimetoksyetan (EGDME, eter dimetylowy glikolu etylenowego, monogli(y)m) należy do grupy rozpuszczalników alkiloeterowych. W warunkach normalnych jest bezbarwną, lotną cieczą, o słabym zapachu eteru, bardzo dobrze rozpuszczalną w wodzie. Na wniosek Komisji Europejskiej Belgia wraz z: Polską, Holandią i Niemcami, przedłożyła Europejskiej Agencji ds. Chemikaliów propozycję uznania 1,2-dimetoksyetanu za substancję stwarzającą szczególnie duże obawy ze względu na jej szkodliwe działanie na rozrodczość.1,2-Dimetoksyetan jest stosowany jako substancja pomocnicza w przetwórstwie przy wytwarzaniu i sporządzaniu chemikaliów przemysłowych, produkcji fluoropolimerów oraz jako rozpuszczalnik i środek czyszczący w przemyśle mikroelektronicznym i w poligrafii. Jest również stosowany jako rozpuszczalnik takich metali alkalicznych, jak: lit, sód, potas, pallad. 1,2-Dimetoksyetan wykorzystuje się również jako rozpuszczalnik elektrolitów baterii litowych i do recyklingu akumulatorów litowych. W 1997 r. rozpoczęto produkcję baterii litowo-jonowych. Baterie litowe (Li-FeS2) zostały wprowadzone na rynek popularnej elektroniki konsumenckiej na początku 2007 r. przez firmę Energizer (baterie Energizer Ultimate Lithium). W 2008 r. firma Philips wprowadziła baterie Philips Lithium Ultra. Ogniwo litowo-żelazowe jest zbudowane z litowej (metalicznej) anody i katody w formie pasty ze sproszkowanego siarczku żelaza, zmieszanego z grafitem zanurzonej w ciekłym roztworze elektrolitu. Jako elektrolity stosowane są związki organiczne, np.: węglan propylenu, dioksolan, 1,2-dimetoksyetan (około 6%). Szacuje się, że rocznie sprzedaje się około 300 mln sztuk (7,5 tys. ton) baterii i akumulatorów małogabarytowych. Na podstawie tych danych można przypuszczać, że na 1,2-dimetoksyetan jest narażonych kilkadziesiąt tysięcy pracowników, zarówno przy produkcji baterii, jak i ich recyklingu. W dostępnym piśmiennictwie nie znaleziono informacji na temat toksyczności ostrej i przewlekłej 1,2-dimetoksyetanu u ludzi, z wyjątkiem jednego doniesienia, pochodzącego z Departamentu Transportu USA, że wdychanie par 1,2-dimetoksyetanu może powodować zawroty głowy i trudności w oddychaniu, natomiast w przypadku połknięcia mogą wystąpić: nudności, wymioty i utrata przytomności (stężeń i dawek związku nie podano). W Polsce dotychczas nie ustalono wartości najwyższego dopuszczalnego stężenia (NDS) 1,2-dimetoksyetanu. Spośród krajów Unii Europejskiej wartość OEL ustaliła Łotwa na poziomie 10 mg/m³, natomiast w Kanadzie wartość dopuszczalnego poziomu narażenia wynosi 18 mg/m³. Największy producent eterów glikoli na świecie Ferro Corporation zaleca wartość dopuszczalnego narażenia zawodowego dla eterów glikolowych (TWA) na poziomie 18,7 mg/m³ (5 ppm w przeliczeniu na EGDME) oraz wartość chwilową (STEL) – 93,5 mg/m³(25 ppm w przeliczeniu na EGDME). Producent Ferro Corporation rekomenduje dla kobiet w wieku rozrodczym wartość dla eterów glikoli (TWA) na poziomie 3,74 mg/m³ (1 ppm w przeliczeniu na EGDME) oraz wartość chwilową (STEL) – 18,7 mg/m³ (5 ppm w przeliczeniu na EGDME). Do wyliczenia wartości najwyższego dopuszczalnego stężenia (NDS) przyjęto wartość NOAEC 187 mg/m³ wyznaczoną dla królików na podstawie zmian w nabłonku kanalików nasiennych (narażenie inhalacyjne dwutygodniowe, metoda OECD 412). Po przyjęciu odpowiednich współczynników niepewności zaproponowano przyjęcie stężenia 10 mg/m³ za wartość NDS 1,2-dimetoksyetanu bez ustalenia wartości najwyższego dopuszczalnego stężenia chwilowego (NDSCh). Normatyw oznakowano literami „Ft” – substancja działająca toksycznie na płód oraz „SK”– wchłanianie substancji przez skórę może być podobnie istotne, jak przy narażeniu drogą oddechową. Nie ma danych w dostępnym piśmiennictwie umożliwiających ustalenie wartości dopuszczalnego stężenia w materiale biologicznym (DSB) 1,2-dimetoksyetanu. Należy podkreślić, że kobiety w wieku rozrodczym nie powinny być zatrudniane do prac w narażeniu na 1,2-dimetoksyetan. Przeciwwskazanie to powinno być ujęte w rozporządzeniu ministra zdrowia w sprawie przeprowadzania badań lekarskich pracowników, zakresu profilaktycznej opieki zdrowotnej nad pracownikami oraz orzeczeń lekarskich wydawanych do celów przewidzianych w kodeksie pracy.
1,2-Dimethoxyethane (EGDMA, ethylene glycol dimethyl ether, monoglym) belongs to the group of alkyl ether solvents. Under normal conditions, it is a colorless, volatile liquid with a faint odor of ether and is very soluble in water. Poland, Belgium, the Netherlands and Germany has submitted a proposal to the European Chemical Agency on recognizing 1,2-dimethoxyethane as a substance of very high concern because of its harmful effects on reproduction. 1,2-Dimethoxyethane is produced in Europe in the amount of >1000 t/year. It is a modern and oxygenated solvent commonly used as an ingredient of paints and varnishes, motor fluids and products for cleaning and degreasing. It is also used as a solvent for alkali metals such as lithium, sodium, potassium, palladium and it is also used as a solvent for electrolyte lithium batteries and lithium battery recycling. There are no data on the acute and chronic toxicity of 1,2-dimethoxyethane at humans in the available literature. A report from the US Department of Transportation describes that the inhalation of vapors of 1,2-dimethoxyethane may cause dizziness, breathing difficulties and in the case of ingestion may cause nausea, vomiting, loss of consciousness (concentrations and doses of a compound not specified). On the basis of chemical structure of 1,2-dimethoxyethane and its metabolism it can be assumed that this substance can be harmful to hematopoietic system, but there are no data on the effect in humans. Based on epidemiological studies on overall exposure to glycol alkyl ethers it can be noted that the effects observed in humans after the exposure to ethylene glycol alkyl ethers were related to adverse effects on hematological parameters, fertility and fetal development. 1,2-Dimethoxyethane metabolizes mainly to 2-methoxyethanol, next by the enzymatic oxidation to 2-methoxyacetic acid (MAA). 2-Methoxyethanol is a substance which can cause hemolytic anemia and can be harmful to reproduction and development of human fetuses. The LD50 value after oral administration of 1,2- dimethoxyethane is 2525–4000 mg/kg bw, LC50 value is between 20 mg/l and 63 mg/l, while the LD50 value after dermal administration is in the range of 1000–2000 mg/kg bw. Data on mutagenicity of ether are inconclusive. In Chinese hamster ovary cells in vitro, 1,2-dimethoxyethane induced sister chromatid exchange. No data were found on the carcinogenicity of ether or its metabolite 2-methoxyethanol. On the basis of the analysis of experimental results on laboratory animals it can be concluded that the critical effect of 1,2-dimethoxyethane influences reproduction and development of offsprings. Histopathological changes in seminiferous epithelium and spermatogenesis disorders, aspermia and oligospermia were observed in rats and rabbits exposed by inhalation to 1,2-dimethoxyethane. Exposing female rats, rabbits and mice to 1,2-dimethoxyethane during organogenesis caused a toxic effect on an embryo (mortality), a reduction in body weight in fetuses, a delay in ossification and growth, an increase of malformations and cardiovascular changes. In Poland the MAC value of 1,2-dimethoxyethane is not established. From the European Union countries, Latvia established the OEL at 10 mg/m3. In Canada, the tolerable exposure level is 18 mg/m3. The Ferro Corporation is the largest producer of glycol ethers and it recommends the tolerable occupational exposure to glycol ethers at 18.7 mg/m3 (5 ppm calculated as EGDMA) (TWA) and the short-term value (STEL) of 93.5 mg/m3 (25 ppm as EGDMA). For women in the reproductive age, the Ferro Corporation recommends values for the glycol ethers as TWA - 3.74 mg/m3 (1 ppm as EGDMA) and STEL – 18.7 mg/m3 (5 ppm calculated as EGDMA). The NOAEC value of 187 mg/m3 determined for rabbits on the basis of changes in the epithelium of the seminiferous tubules (2-week inhalation exposure, OECD 412) was used To calculate MAC values. After applying uncertainty factors, the proposed limit value for 1,2-dimethoxyethane is 10 mg/m3. STEL value was not established. The substance was labeled with "Ft" (a substance toxic to a fetus) and "skin" (absorption of substances through the skin can be similarly important as inhalation). It should be emphasized that women in the reproductive age should not be employed at workstations where 1,2-dimethoxyethane is used. This contraindication should be included in the regulation of the minister of health on conducting medical tests of employees, scope of preventive health care for employees and medical certificates issued for purposes provided in the Labour Code.
Źródło:
Podstawy i Metody Oceny Środowiska Pracy; 2016, 3 (89); 37-66
1231-868X
Pojawia się w:
Podstawy i Metody Oceny Środowiska Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The 2 ½D algorithm in robot workspace analysis
Autorzy:
Kost, G.
Reclik, D.
Powiązania:
https://bibliotekanauki.pl/articles/386291.pdf
Data publikacji:
2008
Wydawca:
Politechnika Białostocka. Oficyna Wydawnicza Politechniki Białostockiej
Tematy:
algorytm 2 1/2 D
robotyka
algorytm Floyd'a
2 1/2 D algorithm
robotics
Floyd’s algorithm
Opis:
In this paper there is presented the method of 3D manipulator’s workspace analysis. The analysis of robot’s work-space is necessary for generation the safety movement path. There was 2 ˝ D method, which is based on algorithm of following sections defining in robot work area. Those sections are explored by flat analysis, but the results are transposed into graph form. This graph is the record of all possible movements, so to get the optimum movement there must be used Floyd’s algorithm. This, shortest trace is optimized and smoothed by using B-Spline curves.
Źródło:
Acta Mechanica et Automatica; 2008, 2, 3; 65-70
1898-4088
2300-5319
Pojawia się w:
Acta Mechanica et Automatica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Influence of imidasolium ring substitution on chitin dissolution in ionic liquids
Autorzy:
Kopka, Karolina A.
Jaworska, Małgorzata M.
Powiązania:
https://bibliotekanauki.pl/articles/1035379.pdf
Data publikacji:
2012
Wydawca:
Sieć Badawcza Łukasiewicz - Polskie Towarzystwo Chitynowe
Tematy:
1-butyl- 2
Opis:
Presented paper discuss the influence of substitution of imidasolium ring on the solubility and structure of chitin. The 1-butyl-3-methyl imidazolium chloride (BMIM)(Cl) and the 1-butyl-2,3- dimethyl imidazolium chloride (BMMIM)(Cl) were used as solvents. These ionic liquids differ by the presence of the substituent in position 2 that causes differences in physical and chemical properties. The surface of chitin particle was observe under electron microscope and chitin IR spectra were compared to investigated polymer structure after regeneration with water. It was found that both IL are good solvents for chitin. Moreover after regeneration chitin structure was similar to native one but became more porous.
Źródło:
Progress on Chemistry and Application of Chitin and its Derivatives; 2012, 17; 37-42
1896-5644
Pojawia się w:
Progress on Chemistry and Application of Chitin and its Derivatives
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
1,1,2-Trichloroetan – metoda oznaczania
1,1,2-Trichloroethane – a determination method
Autorzy:
Kucharska, M.
Wesołowski, W.
Gromiec, J.
Powiązania:
https://bibliotekanauki.pl/articles/138396.pdf
Data publikacji:
2011
Wydawca:
Centralny Instytut Ochrony Pracy
Tematy:
1,1,2-trichloroetan
analiza powietrza
stanowisko pracy
chromatografia gazowa
1,1,2-trichloroethane
air analysis
workplace
gas chromatography
Opis:
Metodę stosuje się do oznaczania stężeń par 1,1,2-trichloroetanu w powietrzu na stanowiskach pracy. Metoda polega na adsorpcji par 1,1,2-trichloroetanu na węglu aktywnym, desorpcji dichlorometanem i analizie chromatograficznej otrzymanego roztworu. Oznaczalność metody wynosi 0,5 mg/m3 (dla próbki o objętości 10 l).
This method is based on the adsorption of 1,1,2-trichloroethaneon charcoal, desorption with dichloromethane and a gas chromatographic (GC-MSD) analysis of the resulting solution. The determination limit of the method is 0.5 mg/m3.
Źródło:
Podstawy i Metody Oceny Środowiska Pracy; 2011, 1 (67); 161-167
1231-868X
Pojawia się w:
Podstawy i Metody Oceny Środowiska Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Człowiek jako mężczyzna i kobieta. Fundamenty antropologii biblijnej, ich źródła i konsekwencje
Humanity as Man and Woman. Fundamental Biblical Anthropology, its Sources and Consequences
Autorzy:
Lemański, Janusz Adam
Powiązania:
https://bibliotekanauki.pl/articles/1044167.pdf
Data publikacji:
2021-03-18
Wydawca:
Katolicki Uniwersytet Lubelski Jana Pawła II
Tematy:
człowiek
mężczyzna i kobieta
płeć
Rdz 1–2
man
man and woman
sex
Gen 1–2
Opis:
W artykule omówione zostały dwa opisy stworzenia człowieka (Rdz 1; 2–3). Akcent w analizie tych wypowiedzi położony jest na fakt, że w obu opisach podkreśla się, iż człowiek został stworzony jako mężczyzna i kobieta. Dwupłciowa natura człowieka akcentowana jest w nich zarówno w wymiarze biologicznym i religijnym (tak Rdz 1,26-28), jak i społecznym (tak Rdz 2,18-25). Obie płcie są sobie równe w każdym z tych aspektów. Człowiek w całej pełni realizuje swoje powołanie do życia i współpracy z Bogiem dopiero jako mężczyzna i kobieta. Jego zdolność do nawiązywania relacji wyraża się najpełniej w obrębie płciowego zróżnicowania własnego gatunku. Zachodzi to w wymiarze biologicznym (płodność umożliwiająca poddanie sobie ziemi) oraz intelektualnym i duchowym (kobieta jako „odpowiednia pomoc”).  
The article discusses the two descriptions of the creation of man (Gen 1:2-3). In analyzing these verses, emphasis is placed on the fact that both descriptions stress that man was created as a man and a woman. The dual-gender nature of mankind is accented in both passages in the biological, religious (Gen 1: 26-28) and social (Gen 2:18-25) dimensions. Both sexes are equal to each other in each of these aspects. People fully achieves their calling to live and cooperate with God only as a man and a woman. One’s ability to establish relationships is most fully expressed within the sexual diversity of our species. This occurs in the biological (fertility enabling us to submit the earth) as well as the intellectual and spiritual dimensions (woman as the “suitable helper”).  
Źródło:
Verbum Vitae; 2021, 39, 1; 97-118
1644-8561
2451-280X
Pojawia się w:
Verbum Vitae
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Mass transfer in the bath reactor of the adsorption process of 1,2-dichloropropane from aqueous solution onto the activated carbon
Autorzy:
Pełech, R.
Powiązania:
https://bibliotekanauki.pl/articles/779985.pdf
Data publikacji:
2007
Wydawca:
Zachodniopomorski Uniwersytet Technologiczny w Szczecinie. Wydawnictwo Uczelniane ZUT w Szczecinie
Tematy:
1,2-dichloropropan
węgiel aktywny
adsorpcja
kinetyka
ścieki
1,2-dichloropropane
activated carbon
adsorption
kinetic
waste
Opis:
A pseudo-second order rate equation describing the kinetics of the adsorption of 1,2-dichloropropane from aqueous solution onto the activated carbon at different initial concentrations, adsorbent dose, temperature, particle diameter and the rate of stirring have been developed. The rate constant was calculated. The rate constant correlation in a good mixing conditions was described as a function of the temperature.
Źródło:
Polish Journal of Chemical Technology; 2007, 9, 2; 30-33
1509-8117
1899-4741
Pojawia się w:
Polish Journal of Chemical Technology
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Propano-1,2-diol – frakcja wdychalna i pary : dokumentacja proponowanych dopuszczalnych wielkości narażenia zawodowego
Propane-1,2-diol – inhalable fraction and vapours : documentation of proposed values of occupational exposure limits (OELs)
Autorzy:
Soćko, R.
Powiązania:
https://bibliotekanauki.pl/articles/138188.pdf
Data publikacji:
2016
Wydawca:
Centralny Instytut Ochrony Pracy
Tematy:
propano-1,2-diol (glikol propylenowy)
narażenie zawodowe
propane-1,2-diol (propylene glycol)
ocupational exposure
Opis:
Propano-1,2-diol (glikol propylenowy) jest bezbarwną, silnie higroskopijną cieczą, którą się stosuje: do produkcji płynów niezamarzających, żywic poliestrowych, środków czystości i detergentów, a także w przemyśle tworzyw sztucznych jako czynnik higroskopijny oraz w wyrobach tekstylnych i przy produkcji papierosów (do regulacji wilgotności tytoniu). Propano-1,2-diol jest także głównym składnikiem płynów stosowanych w elektronicznych papierosach. W przemyśle jest używany do produkcji: lakierów elektroizolacyjnych, płynów hamulcowych, materiałów pomocniczych dla odlewnictwa oraz żywic i klejów. W technologiach kosmicznych propano-1,2-diol jest wykorzystywany jako chłodziwo lub składnik chłodziwa, a ponadto jest stosowany w: przemyśle kosmetycznym (składnik kremów, dodatek do past do zębów i płynów do płukania jamy ustnej oraz główny składnik dezodorantu w sztyfcie). Jest także wykorzystywany w: medycynie, farmacji i przemyśle spożywczym. W Polsce obecnie nie produkuje się propano-1,2-diolu, natomiast jest on produkowany przez kilkadziesiąt firm europejskich, m.in.: niemieckich, belgijskich, holenderskich, brytyjskich, irlandzkich, fińskich i hiszpańskich. Ze względu na wszechstronne zastosowanie propano-1,2-diolu w wielu gałęziach przemysłu i przy produkcji różnych produktów, również na terenie Polski, można przyjąć, że narażenie zawodowe na ten związek dotyczy licznej grupy pracowników. W Polsce dotychczas nie ustalono wartości normatywu higienicznego propano-1,2-diolu, stąd potrzeba jego ustalenia. Propano-1,2-diol nie został zaklasyfikowany jako substancja stwarzająca zagrożenia zgodnie z kryteriami rozporządzenia WE nr 1272/2008. W piśmiennictwie nie opisano przypadków ostrych zatruć ludzi propano-1,2-diolem w warunkach pracy zawodowej. Obserwacje kliniczne ludzi, którym podawano propano-1,2-diol jako rozpuszczalnik leków, wskazują na: słabe działanie narkotyczne związku, niewielkiego stopnia działanie drażniące na skórę i spojówki oczu, szczególnie w warunkach przedłużonego narażenia oraz działanie uczulające, głównie u osób nadwrażliwych. Na podstawie wyników badań na zwierzętach potwierdzono niewielkiego stopnia działanie propano-1,2-diolu w warunkach powtarzanego narażenia. Zastosowanie różnych technik uczulania propano-1,2-diolem świnek morskich nie spowodowało działania uczulającego. Wyniki otrzymane z badań na zwierzętach, które dotyczyły toksyczności przewlekłej pokarmowej i inhalacyjnej propano-1,2-diolu, świadczą o małej toksyczności związku. Propano-1,2-diol nie powodował żadnych szkodliwych następstw w opisanych warunkach doświadczalnych, z wyjątkiem zmian w obrazie krwi obwodowej. Po podaniu związku w dużych dawkach/stężeniach u zwierząt obserwowano cechy uszkodzenia wątroby i zmiany w obrazie krwi obwodowej, ale bez cech uszkodzenia szpiku kostnego i śledziony. Nie stwierdzono aktywności mutagennej propano-1,3-diolu u testowanych szczepów bakterii Salmonella Typhimurium oraz w badaniach na komórkach ssaków. Na podstawie wyników badań doświadczalnych wykazano, że propano-1,2-diol nie wykazuje działania fetotoksycznego oraz nie wpływa na rozrodczość, jeżeli jego stężenia są nietoksyczne dla matek. Na podstawie danych pochodzących z piśmiennictwa nie uzyskano przekonujących dowodów, że propano-1,2-diol może być przyczyną zmian teratogennych u potomstwa narażanych zwierząt. U myszy, którym aplikowano na skórę propano-1,2-diol przez 120 tygodni, a także u szczurów otrzymujących związek z paszą w warunkach przewlekłych, nie stwierdzono wzrostu liczby przypadków nowotworów. Przy ustaleniu wartości normatywu higienicznego propano-1,2-diolu uwzględniono jego działanie układowe. Wartość najwyższego dopuszczalnego stężenia (NDS) propano-1,2-diolu wyliczono na podstawie danych pochodzących z wyników badań przeprowadzonych na małpach makak rezus (Macaca mulatta) i szczurach, które narażano drogą inhalacyjną na pary związku o stężeniach 10 ÷ 348 mg/m3 (małpy) i 171 ÷ 348 mg/m3 (szczury) przez 13 ÷ 18 miesięcy. Na podstawie doświadczalnej wartości NOAEC (no observed adverse effect concentration) dla obu gatunków zwierząt, zaproponowano wartość NDS propano-1,2-diolu dla frakcji wdychalnej i par na poziomie 100 mg/m3. Zaproponowana wartość normatywu higienicznego powinna zabezpieczyć pracowników przed działaniem drażniącym propano-1,2-diolu oraz przed ewentualnym jego działaniem układowym. Nie ma przesłanek do oznaczenia propano-1,2-diolu oznakowaniem „skóra” – wchłanianie substancji przez skórę może być tak samo istotne, jak przy narażeniu drogą oddechową.
Propane-1,2-diol (propylene glycol) is a colorless, strongly hygroscopic liquid used to produce antifreezes, polyester resins and detergents. It is used in the plastics industry as a hygroscopic agent, in textile products and in manufacturing cigarettes (for adjusting moistness of tobacco) and as the major component of the liquid used in electronic cigarettes. In the industry, it is used to produce electrical insulating varnishes, brake fluids, auxiliary materials for foundry, resins and adhesives. In the space technologies, propane-1,2-diol is used as a coolant or coolant component. Propylene glycol is also used in the cosmetic industry (as a component of creams, an additive to toothpastes and mouth rinses, the main ingredient in deodorant stick), medicine, pharmacy, food and in cleaning products. Nowadays, propylene glycol is not produced in Poland, however, it is produced by dozens of European companies, including German, Belgian, Dutch, British, Irish, Finnish and Spanish. Due to the wide use of propylene glycol in many industries in the production of various products, including those manufactured in Poland, the number of people exposed to it in the workplace can be significant. In Poland, normative hygienic values for propylene glycol have not been established so far. Propylene glycol is not classified as dangerous substance according to the criteria of Regulation (EC) No 1272/2008 (CLP). In literature, there are no data on cases of acute poisoning with propylene glycol in working conditions. Clinical observations of people treated with propylene glycol as a solvent for drugs show a weak narcotic effect, mild irritation to the skin and conjunctiva of the eye especially during prolonged exposure and sensitization especially in sensitive individuals. Animal studies have shown mild irritation under repeated exposure. The use of different techniques of sensitization with propylene glycol of guinea pigs did not cause sensitization. The results obtained from animal studies on chronic toxicity of food and inhalation of propylene glycol show low-toxicity of this compound. Propylene glycol did not cause any harmful consequences in the described experimental conditions with the exception of changes in the image of peripheral blood. After administration of high doses/concentrations of glycol in animals, signs of liver damage and changes in the image of the peripheral blood but without evidence of damage to the bone marrow and spleen were observed. There was no mutagenic activity in propylene glycol in tested strains of Salmonella Typhimurium and studies on mammalian cells. The experimental results indicate that propylene glycol does not display fetotoxicity and does not affect the reproduction when concentrations are non-toxic for a mother. The literature did not provide convincing evidence that propylene glycol can cause teratogenic effects in the offspring of exposed animals. There was no increase in the number of cancer in cases of mice which had propylene glycol applied to the skin for 120 weeks and rats which received propylene glycol in food in chronic conditions. A systemic action was considered in determining the normative hygiene of propylene glycol. The value of the maximum permissible concentration of propylene glycol were calculated on the basis of data from tests on rhesus monkeys (Macaca mulatta) and rats which were exposed by inhalation to the vapor of this compound in concentrations from 10 to 348 mg/m3 (monkeys) and from 171 to 348 mg/m3 (rat) for 13–18 months. Based on the experimental NOAEC value (no observed adverse effect concentration) of propylene glycol for both species, limit value for inhalable fraction and vapor of 100 mg /m3 was proposed. The proposed value of the normative hygiene should protect workers from the irritation of propylene glycol and from possible systemic action. There is no reason to label normative as "skin" (the absorption of substances through the skin can be just as important as the inhalation).
Źródło:
Podstawy i Metody Oceny Środowiska Pracy; 2016, 3 (89); 103-130
1231-868X
Pojawia się w:
Podstawy i Metody Oceny Środowiska Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies