Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Vinti, Gianluca" wg kryterium: Autor


Wyświetlanie 1-2 z 2
Tytuł:
Order of approximation for nonlinear sampling Kantorovich operators in Orlicz spaces
Autorzy:
Costarelli, Danilo
Vinti, Gianluca
Powiązania:
https://bibliotekanauki.pl/articles/745018.pdf
Data publikacji:
2013
Wydawca:
Polskie Towarzystwo Matematyczne
Tematy:
Nonlinear sampling Kantorovich operators, Orlicz spaces, order of approximation, Lipschitz classes, irregular sampling
Opis:
In this paper, we study the rate of approximation for the nonlinear sampling Kantorovich operators. We consider the case of uniformly continuous and bounded functions belonging to Lipschitz classes of the Zygmund-type, as well as the case of functions in Orlicz spaces. We estimate the aliasing errors with respect to the uniform norm and to the modular functional of the Orlicz spaces, respectively. The general setting of Orlicz spaces allows to deduce directly the results concerning the rate of convergence in \(L^p\)-spaces, \(1 \miu p\) < \(\infty\), very useful in the applications to Signal Processing. Others examples of Orlicz spaces as interpolation spaces and exponential spaces are discussed and the particular cases of the nonlinear sampling Kantorovich series constructed using Fej\'er and B-spline kernels are also considered.
Źródło:
Commentationes Mathematicae; 2013, 53, 2
0373-8299
Pojawia się w:
Commentationes Mathematicae
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Approximation by nonlinear integral operators in some modular function spaces
Autorzy:
Bardaro, Carlo
Musielak, Julian
Vinti, Gianluca
Powiązania:
https://bibliotekanauki.pl/articles/1311190.pdf
Data publikacji:
1996
Wydawca:
Polska Akademia Nauk. Instytut Matematyczny PAN
Tematy:
modular space
nonlinear integral operator
generalized Lipschitz condition
approximation by singular integrals
Opis:
Let G be a locally compact Hausdorff group with Haar measure, and let L⁰(G) be the space of extended real-valued measurable functions on G, finite a.e. Let ϱ and η be modulars on L⁰(G). The error of approximation ϱ(a(Tf - f)) of a function $f ∈ (L⁰(G))_{ϱ+η} ∩ Dom T$ is estimated, where $(Tf)(s) = ∫_G K(t-s,f(t))dt$ and K satisfies a generalized Lipschitz condition with respect to the second variable.
Źródło:
Annales Polonici Mathematici; 1996, 63, 2; 173-182
0066-2216
Pojawia się w:
Annales Polonici Mathematici
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies