Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Rojek, I." wg kryterium: Autor


Wyświetlanie 1-9 z 9
Tytuł:
MLP neural nets in design of technological process
Sieci neuronowe MLP w projektowaniu procesu technologicznego
Autorzy:
Rojek, I.
Powiązania:
https://bibliotekanauki.pl/articles/176084.pdf
Data publikacji:
2015
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
neural nets
selection of tools
selection of machine tools
selection of machining parameters
technological process
sieci neuronowe
dobór narzędzi
dobór obrabiarek
dobór parametrów skrawania
proces technologiczny
Opis:
This paper proposes MLP neural nets to improve technological process design. The first stage of research concerned the creation of models to selection of machine tools, the second stage pertained the creation of models to selection of tools and the third stage concerned the creation of models to selection of machining parameters. In addition, use of tools is forecasted at various time intervals. The models were created using Statsoft STATISTICA Data Miner. These models were compared in order to obtain the best selection. Based on the models, it is possible to create different scenarios of the design of technological process.
W artykule przedstawiono opracowanie sieci neuronowych MLP w celu poprawy projektowania procesu technologicznego. Pierwszy etap dotyczył tworzenia modeli wyboru obrabiarek, drugi modeli wyboru narzędzi i trzeci tworzenia modeli do wyboru parametrów obróbki skrawaniem. Dodatkowo w opracowanych modelach uwzględniono prognozowanie użycia narzędzi w różnych przedziałach czasowych. Stosowano program Statsoft STATISTICA Data Miner. Prowadzono analizy wyników dla poszczególnych modeli i opracowano kryteria doboru. Stwierdzono, że wprowadzenie sieci neronowych umożliwia tworzenie różnych scenariuszy projektowania procesu technologicznego.
Źródło:
Advances in Manufacturing Science and Technology; 2015, 39, 1; 87-95
0137-4478
Pojawia się w:
Advances in Manufacturing Science and Technology
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Tooling selection in technological processes using neural networks
Dobór oprzyrządowania narzędziowego w procesie technologicznym przy użyciu sieci neuronowych
Autorzy:
Rojek, I.
Powiązania:
https://bibliotekanauki.pl/articles/94180.pdf
Data publikacji:
2015
Wydawca:
Politechnika Poznańska. Wydawnictwo Politechniki Poznańskiej
Tematy:
tooling (accessory)
technological process
neural networks
oprzyrządowanie
proces technologiczny
sieci neuronowe
Opis:
The idea of the author’s research is to develop a system aiding the design of a technological process (a CAPP system), namely a system for creation of a technological process plan, in which the sequence of technological operations is defined and for each operation in the technological process, the appropriate machine, tools, tooling and machining parameters are selected. The article discusses accessory selection in technological processes using neural networks. Tooling selection is a necessary stage in the design of technological processes if a tool that has been selected does not fit the machine. Tooling selection models were prepared using unidirectional multilayer neural networks with back propagation of error (MLP) and a self-organizing Kohonen network. Two completely different neural networks were selected for the selection of the tooling. MLP network represents a network with learning supervision, and network Kohonen network learning without supervision. The training data for the neural networks was prepared at a manufacturing company. The neural networks were made using the Statsoft STATISTICA Data Miner software.
Ideą badań autorki jest opracowanie systemu wspomagania projektowania procesu technologicznego (systemu CAPP ), czyli systemu , w którym kolejność operacji technologicznych jest zdefiniowana , a dla każdej operacji następuje odpowiedni dobór obrabiarek, narzędzi, oprzyrządowania oraz parametrów obróbki. W artykule przedstawiono dobór oprzyrządowania narzędziowego przy użyciu sieci neuronowych. Dobór ten jest niezbędnym etapem projektowania procesu w przypadku, gdy dobrane narzędzie nie pasuje na obrabiarkę. Zostały wykonane modele doboru oprzyrządowania przy zastosowaniu sieci neuronowych jednokierunkowych wielowarstwowych ze wsteczną propagacją błędu (MLP) oraz samoorganizującej się sieci Kohonena. Dane do nauczenia sieci neuronowych zostały przygotowane w przedsiębiorstwie produkcyjnym. Sieci neuronowe zostały wykonane przy użyciu oprogramowania Statsoft STATISTICA Data Miner.
Źródło:
Archives of Mechanical Technology and Materials; 2015, 35; 41-50
2450-9469
Pojawia się w:
Archives of Mechanical Technology and Materials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Neural networks as performance improvement models in intelligent CAPP systems
Autorzy:
Rojek, I.
Powiązania:
https://bibliotekanauki.pl/articles/971020.pdf
Data publikacji:
2010
Wydawca:
Polska Akademia Nauk. Instytut Badań Systemowych PAN
Tematy:
classification model
neural network
tool
manufacturing operation
Opis:
The paper presents neural networks as performance improvement models in intelligent computer aided process planning systems (CAPP systems). For construction of these models three types of neural networks were used: linear network, multi-layer network with error backpropagation, and the Radial Basis Function network (RBF). The models were compared. Due to the comparison, we can say which type of neural network is the best for selection of tools for manufacturing operations. Tool selection for manufacturing operation is a classification problem. Hence, neural networks were built as classification models, meant to improve tool selection for manufacturing. The study was done for selected manufacturing operations: turning, milling and grinding. Models for the milling operation were presented in detail.
Źródło:
Control and Cybernetics; 2010, 39, 1; 54-68
0324-8569
Pojawia się w:
Control and Cybernetics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Comparison of different types of neuronal nets for failures location within water-supply networks
Porównanie różnych typów sieci neuronowych do lokalizacji awarii w sieciach wodociągowych
Autorzy:
Rojek, I.
Studziński, J.
Powiązania:
https://bibliotekanauki.pl/articles/1365982.pdf
Data publikacji:
2014
Wydawca:
Polska Akademia Nauk. Polskie Naukowo-Techniczne Towarzystwo Eksploatacyjne PAN
Tematy:
sieci wodociągowe
modele hydrauliczne sieci
wykrywanie i lokalizacja wycieków wody
sieci neuronowe MLP i Kohonena
water supply networks
network hydraulic models
detection and location of water leaks
MLP and Kohonen neuronal nets
Opis:
W artykule prezentowane są różne typy sieci neuronowych do lokalizacji awarii w sieci wodociągowej. Obecne wykorzystanie systemów monitorowania nie odpowiada ich możliwościom. Współcześnie systemy monitoringu służą jako autonomiczne programy do zbierania informacji o przepływach i ciśnieniach wody w pompowniach źródłowych, hydroforniach strefowych i końcówkach sieci wodociągowej, dając ogólną wiedzę o stanie jej pracy, gdy jednocześnie mogą i powinny być wykorzystane jako elementy IT systemów zarządzania siecią, w tym w szczególności w zakresie wykrywania i lokalizacji wycieków wody. Modele lokalizacji awarii sieci zostały utworzone przy wykorzystaniu jednokierunkowych sieci neuronowych ze wsteczną propagacją błędu typu MLP i sieci Kohonena.
The different types of neuronal nets for failures location within a water-supply network are presented in the paper. The present utilization of the monitoring systems does not exhaust their possibilities. The monitoring systems operated as autonomic programs gather the information about flows and pressures of water in the source pumping stations, in the zones of hydrophore stations and also in some selected pipes of water network, giving general knowledge about state of its work, when simultaneously they could and should be used as elements of IT systems for network management, and particularly regarding detection and location of hidden water leaks. The models of network failures location are created by means of neuronal nets in the form of MLP and Kohonen nets.
Źródło:
Eksploatacja i Niezawodność; 2014, 16, 1; 42-47
1507-2711
Pojawia się w:
Eksploatacja i Niezawodność
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Machine learning methods for optimal compatibility of materials in ecodesign
Autorzy:
Rojek, I.
Dostatni, E.
Powiązania:
https://bibliotekanauki.pl/articles/202203.pdf
Data publikacji:
2020
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
machine learning methods
classification models
ecodesign
selection of materials
compatibility
Opis:
Machine learning (ML) methods facilitate automated data mining. The authors compare the effectiveness of selected ML methods (RBF networks, Kohonen networks, and random forest) as modelling tools supporting the selection of materials in ecodesign. Applied in the design process, ML methods help benefit from the knowledge, experience and creativity of designers stored in historical data in databases. Implemented into a decision support system, the knowledge can be utilized – in the case under analysis – in the process of design of environmentally friendly products. The study was initiated with an analysis of input data for the selection of materials. The input data, specified in cooperation with designers, include both technological and environmental parameters which guarantee the desired compatibility of materials. Next, models were developed using selected ML methods. The models were assessed and implemented into an expert system. The authors show which models best fit their purpose and why. Models supporting the selection of materials, connections and disassembly methods help boost the recycling properties of designed products.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2020, 68, 2; 199-206
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Failures location within water-supply systems by means of neural networks
Autorzy:
Rojek, I.
Studziński, J.
Powiązania:
https://bibliotekanauki.pl/articles/385212.pdf
Data publikacji:
2014
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Automatyki i Pomiarów
Tematy:
water supply networks
network hydraulic
model, detection and location of water leakages
neural networks
Opis:
In the article the neural networks used for failures location for water supply networks are presented. To do this a hydraulic model of the water net, as well as an appropriate developed monitoring system have to be used. The current applications of monitoring systems installed in the waterworks do not realize their possibilities. The monitoring systems provided as autonomic programs to collect and record the information about flows and pressures of water in source pumping stations, in the pump stations bringing up the water pressure inside the water net and in the pipes of water supply network give a general knowledge about state of its work, but if they would be used as elements of IT systems supporting the water network management, they could help to solve the tasks concerning detection and localization of water leaks. The models of failures location in water nets described in the paper are created by means of neural networks in the form of MLP nets.
Źródło:
Journal of Automation Mobile Robotics and Intelligent Systems; 2014, 8, 2; 24-28
1897-8649
2080-2145
Pojawia się w:
Journal of Automation Mobile Robotics and Intelligent Systems
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Evaluating the reliability of groove turning for piston rings in combustion engines with the use of neural networks
Autorzy:
Lisiak, P.
Rojek, I.
Twardowski, P.
Powiązania:
https://bibliotekanauki.pl/articles/94150.pdf
Data publikacji:
2017
Wydawca:
Politechnika Poznańska. Wydawnictwo Politechniki Poznańskiej
Tematy:
reliability evaluation
surface roughness
neural networks
ocena niezawodności
chropowatość powierzchni
sieci neuronowe
Opis:
The article describes a method of evaluating the reliability of groove turning for piston rings in combustion engines. Parameters representing the roughness of a machined surface, Ra and Rz, were selected for use in evaluation. At present, evaluation of surface roughness is performed manually by operators and recorded on measurement sheets. The authors studied a method for evaluation of the surface roughness parameters Ra and Rz using multi-layered perceptron with error back-propagation (MLP) and Kohonen neural networks. Many neural network models were developed, and the best of them were chosen on the basis of the effectiveness of measurement evaluation. Experiments were carried out on real data from a production company, obtained from several machine tools. In this way it becomes possible to assess machines in terms of the reliability evaluation of turning.
Źródło:
Archives of Mechanical Technology and Materials; 2017, 37; 35-40
2450-9469
Pojawia się w:
Archives of Mechanical Technology and Materials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Prognozowanie ilości ścieków dopływających do oczyszczalni za pomocą sztucznych sieci neuronowych z wykorzystaniem liniowej analizy dyskryminacyjnej
Forecasting the sewage inflow into a treatment plant using artificial neural networks and linear discriminant analysis
Autorzy:
Szeląg, B.
Studziński, J.
Chmielowski, K.
Leśniańska, A.
Rojek, I.
Powiązania:
https://bibliotekanauki.pl/articles/237303.pdf
Data publikacji:
2018
Wydawca:
Polskie Zrzeszenie Inżynierów i Techników Sanitarnych
Tematy:
Wastewater inflow
sewage treatment plant
water level
daily precipitation
artificial neural networks
discriminant models
mean square error
mean percentage error
relative error
residual relative error
importance coefficient
dopływ ścieków
oczyszczalnia ścieków
poziom wody
opad dobowy
sztuczne sieci neuronowe
model dyskryminacyjny
błąd średniokwadratowy
średni błąd procentowy
błąd względny
względny błąd resztowy
współczynnik ważności
Opis:
W pracy przedstawiono wyniki prognozowania ilości ścieków dopływających do oczyszczalni komunalnej w Rzeszowie z wykorzystaniem perceptronowych wielowarstwowych sztucznych sieci neuronowych. W modelu prognostycznym przyjęto następujące zmienne niezależne: zmierzona ilość ścieków dopływających do oczyszczalni określona w poprzednich dobach, poziom wody w Wisłoku (odbiornik ścieków), suma dobowych opadów atmosferycznych oraz dobowa ilość wody tłoczonej do sieci wodociągowej. Przeprowadzone obliczenia wykazały, że wśród rozpatrywanych zmiennych istotny wpływ na zdolność predykcyjną modelu prognostycznego miał poziom wody w Wisłoku, wysokość opadów atmosferycznych oraz ilość ścieków dopływająca do obiektu zmierzona w poprzednich dniach. Analizowano również wpływ poszczególnych parametrów strukturalnych modelu opartego na sztucznych sieciach neuronowych na wyniki prognozowania. Przeprowadzone badania, z wykorzystaniem drzew klasyfikacyjnych, wykazały, że na liczbę neuronów w warstwie ukrytej wpływała liczba sygnałów wejściowych do modelu, natomiast rodzaj funkcji aktywacji w warstwach ukrytej i wyjściowej miał mniejsze znaczenie, co potwierdziły wartości o znaczeniu predykcyjnym. Badano również możliwość zastosowania liniowej analizy dyskryminacyjnej do oceny zdolności predykcyjnych skonstruowanych modeli prognostycznych. Uzyskane wyniki wykazały, że liniowa analiza dyskryminacyjna może być ciekawym narzędziem do oceny doboru zmiennych w modelu prognostycznym ilości ścieków dopływających do oczyszczalni.
The paper presents the results of forecasting the sewage inflow into the municipal wastewater treatment plant in Rzeszow using multilayer perceptron neural networks. For the forecast model, the following independent variables were adopted: the measured inflow volume to the treatment plant from the previous days, the water level in the Wislok River (effluent receiver), the total daily precipitation and the daily water inflow into the network. The calculations led to conclusions that variables substantially affecting the prognostic capacity of the forecast model included the water level in the Wislok River, the volume of precipitation and the sewage inflow to the facility from the previous days. Additionally, the impact of individual structural parameters of the model based on artificial neural networks on forecasting results was analyzed. The research conducted with the use of classification trees demonstrated that number of neurons in the hidden layer was influenced by the number of inputs to the model, while the type of activation function in the hidden and output layer was of minor importance which was confirmed by the data of prognostic value. The applicability of a linear discriminant analysis for assessment of prognostic ability of the constructed forecast models was also investigated. The results obtained demonstrated that the linear discriminant model might be an interesting assessment tool to select variables for the forecast model of sewage inflow to a treatment plant.
Źródło:
Ochrona Środowiska; 2018, 40, 4; 9-14
1230-6169
Pojawia się w:
Ochrona Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-9 z 9

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies