Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Oja, E." wg kryterium: Autor


Wyświetlanie 1-2 z 2
Tytuł:
Projective nonnegative matrix factorization based on α-divergence
Autorzy:
Yang, Z.
Oja, E.
Powiązania:
https://bibliotekanauki.pl/articles/91672.pdf
Data publikacji:
2011
Wydawca:
Społeczna Akademia Nauk w Łodzi. Polskie Towarzystwo Sieci Neuronowych
Tematy:
Nonnegative Matrix Factorization
NMF
α-divergence
PNMF
α-NMF
α-PNMF
Opis:
The well-known Nonnegative Matrix Factorization (NMF) method can be provided with more flexibility by generalizing the non-normalized Kullback-Leibler divergence to α- divergences. However, the resulting α-NMF method can only achieve mediocre sparsity for the factorizing matrices. We have earlier proposed a variant of NMF, called Projective NMF (PNMF) that has been shown to have superior sparsity over standard NMF. Here we propose to incorporate both merits of α-NMF and PNMF. Our α-PNMF method can produce a much sparser factorizing matrix, which is desired in many scenarios. Theoretically, we provide a rigorous convergence proof that the iterative updates of α-PNMF monotonically decrease the α-divergence between the input matrix and its approximate. Empirically, the advantages of α-PNMF are verified in two application scenarios: (1) it is able to learn highly sparse and localized part-based representations of facial images; (2) it outperforms α-NMF and PNMF for clustering in terms of higher purity and smaller entropy.
Źródło:
Journal of Artificial Intelligence and Soft Computing Research; 2011, 1, 1; 7-16
2083-2567
2449-6499
Pojawia się w:
Journal of Artificial Intelligence and Soft Computing Research
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A comparison of algorithms for separation of synchronous subspaces
Autorzy:
Almeida, M.
Bioucas-Dias, J.
Vigário, R.
Oja, E.
Powiązania:
https://bibliotekanauki.pl/articles/201566.pdf
Data publikacji:
2012
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
phase locking
synchrony
source separation
subspaces
Independent Component Analysis (ICA)
Independent Subspace Analysis (ISA)
magnetoencephalogram (MEG)
Opis:
Independent Subspace Analysis (ISA) consists in separating sets (subspaces) of dependent sources, with different sets being independent of each other. While a few algorithms have been proposed to solve this problem, they are all completely general in the sense that they do not make any assumptions on the intra-subspace dependency. In this paper, we address the ISA problem in the specific context of Separation of Synchronous Sources (SSS), i.e., we aim to solve the ISA problem when the intra-subspace dependency is known to be perfect phase synchrony between all sources in that subspace. We compare multiple algorithmic solutions for this problem, by analyzing their performance on an MEG-like dataset.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2012, 60, 3; 455-460
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies