Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Projective nonnegative matrix factorization based on α-divergence

Tytuł:
Projective nonnegative matrix factorization based on α-divergence
Autorzy:
Yang, Z.
Oja, E.
Powiązania:
https://bibliotekanauki.pl/articles/91672.pdf
Data publikacji:
2011
Wydawca:
Społeczna Akademia Nauk w Łodzi. Polskie Towarzystwo Sieci Neuronowych
Tematy:
Nonnegative Matrix Factorization
NMF
α-divergence
PNMF
α-NMF
α-PNMF
Źródło:
Journal of Artificial Intelligence and Soft Computing Research; 2011, 1, 1; 7-16
2083-2567
2449-6499
Język:
angielski
Prawa:
Wszystkie prawa zastrzeżone. Swoboda użytkownika ograniczona do ustawowego zakresu dozwolonego użytku
Dostawca treści:
Biblioteka Nauki
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
The well-known Nonnegative Matrix Factorization (NMF) method can be provided with more flexibility by generalizing the non-normalized Kullback-Leibler divergence to α- divergences. However, the resulting α-NMF method can only achieve mediocre sparsity for the factorizing matrices. We have earlier proposed a variant of NMF, called Projective NMF (PNMF) that has been shown to have superior sparsity over standard NMF. Here we propose to incorporate both merits of α-NMF and PNMF. Our α-PNMF method can produce a much sparser factorizing matrix, which is desired in many scenarios. Theoretically, we provide a rigorous convergence proof that the iterative updates of α-PNMF monotonically decrease the α-divergence between the input matrix and its approximate. Empirically, the advantages of α-PNMF are verified in two application scenarios: (1) it is able to learn highly sparse and localized part-based representations of facial images; (2) it outperforms α-NMF and PNMF for clustering in terms of higher purity and smaller entropy.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies