Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Kim, Eun-Young" wg kryterium: Autor


Wyświetlanie 1-5 z 5
Tytuł:
Comparing Brain Activation between Students who Use Digital Textbooks and Those who Use Conventional Paper Textbooks
Autorzy:
Seomun, Gyeongae
Yang, Eunjoo
Kim, Eun-Young
Kim, Eun-Jung
Noh, Wonjung
Powiązania:
https://bibliotekanauki.pl/articles/26182205.pdf
Data publikacji:
2013-06-30
Wydawca:
Wydawnictwo Adam Marszałek
Tematy:
brainwave
digital textbook
Opis:
The purpose of this study is to compare the effects of digital textbooks and conventional paper textbooks on brain activation during problem solving among elementary-school students. Subjects included 54 6th grade students who used either digital textbooks or paper textbooks. We measured theta waves, alpha waves, beta waves, and gamma waves using PolyG-I (LAXTHA Inc.). We found significant effects of the textbook type for all brainwaves in the prefrontal lobes. Our results suggest that the use of digital textbooks will enhance the development of cognitive and thinking processes during learning.
Źródło:
The New Educational Review; 2013, 32; 233-242
1732-6729
Pojawia się w:
The New Educational Review
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A Study on the Optimization of Metalloid Contents of Fe-Si-B-C Based Amorphous Soft Magnetic Materials Using Artificial Intelligence Method
Autorzy:
Choi, Young-Sin
Kwon, Do-Hun
Lee, Min_Woo
Cha, Eun-Ji
Jeon, Junhyub
Lee, Seok-Jae
Kim, Jongryoul
Kim, Hwi-Jun
Powiązania:
https://bibliotekanauki.pl/articles/2174571.pdf
Data publikacji:
2022
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
Fe-based amorphous
soft magnetic properties
artificial intelligence
machine learning
random forest regression
Opis:
The soft magnetic properties of Fe-based amorphous alloys can be controlled by their compositions through alloy design. Experimental data on these alloys show some discrepancy, however, with predicted values. For further improvement of the soft magnetic properties, machine learning processes such as random forest regression, k-nearest neighbors regression and support vector regression can be helpful to optimize the composition. In this study, the random forest regression method was used to find the optimum compositions of Fe-Si-B-C alloys. As a result, the lowest coercivity was observed in Fe80.5Si3.63B13.54C2.33 at.% and the highest saturation magnetization was obtained Fe81.83Si3.63B12.63C1.91at.% with R2 values of 0.74 and 0.878, respectively.
Źródło:
Archives of Metallurgy and Materials; 2022, 67, 4; 1459--1463
1733-3490
Pojawia się w:
Archives of Metallurgy and Materials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Education and Research on Polish Studies in Korea
Autorzy:
Cheong, Kwon Byung
Kim, Jong Suck
Choi, Sung Eun (Estera Czoj)
Kim, Yong Deog
Kim, Ji Young
Lee, Ok Jin
Lee, Ji Wone
Koh, Seung Hui
Powiązania:
https://bibliotekanauki.pl/articles/26414309.pdf
Data publikacji:
2013-06-30
Wydawca:
Wydawnictwo Adam Marszałek
Tematy:
Polish studies
Korea
Department of Polish Studies
HUFS
Opis:
Polish education and research in Korea has become systematic since the establishment of the Department of Polish Studies at Hankuk University of Foreign Studies (HUFS). The Department of Polish Studies at HUFS is the only academic department in Korea which teaches and studies the politics, economy, history, and culture of Poland, as well as the Polish language and literature. Since its establishment in 1987, the department has produced more than 800 graduates. The Department of Polish Studies forms and maintains a close relationship with universities in Poland. It also makes continuous effort for more students to study the Polish language at universities in Poland.
Źródło:
The New Educational Review; 2013, 32; 19-34
1732-6729
Pojawia się w:
The New Educational Review
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Mismatch in working hours and workaholism in permanent waged workers
Autorzy:
Park, Shin-Goo
Kim, Hyung-Doo
Min, Jin-Young
Min, Kyoug-Bok
Hwang, Sang-Hee
Jang, Eun-Chul
Powiązania:
https://bibliotekanauki.pl/articles/2116653.pdf
Data publikacji:
2020-03-13
Wydawca:
Instytut Medycyny Pracy im. prof. dra Jerzego Nofera w Łodzi
Tematy:
workaholism
working hours mismatch
waged worker
workaholic
mismatched
weekly working hours
Opis:
ObjectivesA cross-sectional study was conducted to investigate whether working hours mismatch is associated with workaholism.Material and MethodsThis study used the data from the 17th wave (2014) of the nationwide Korean Labor and Income Panel Study. Workaholism was evaluated using the Workaholism Analysis Questionnaire. The final study involved 3157 subjects who answered questions regarding both workaholism and working hours mismatch. To identify the association between working hours mismatch and workaholism according to weekly working hours, a stratification analysis was conducted by dividing the number of working hours/week into 3 groups (≤40 h, 41–59 h, and ≥60 h). The odds ratios were calculated using a multiple logistic regression model, which was adjusted for potential confounders.ResultsThe workers working more hours than desired showed the greatest frequency of workaholism. As regards workaholism, in all weekly working hours groups, the odds ratios of the group working more hours than desired were 4.28, 95% CI: 2.29–7.99 (≥40 h), 2.14, 95% CI: 1.34–3.43 (41–59 h), 3.40, 95% CI: 1.60–7.21 (≤60 h), which were statistically significant compared to the reference (matched) group. There was no statistically significant relationship between working hours and workaholism when stratified according to the mismatch in working hours.ConclusionsThe workers’ working hours mismatch can be significantly related to workaholism.
Źródło:
International Journal of Occupational Medicine and Environmental Health; 2020, 33, 2; 187-194
1232-1087
1896-494X
Pojawia się w:
International Journal of Occupational Medicine and Environmental Health
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The Prediction of Optimized Metalloid Content in Fe-Si-B-P Amorphous Alloys Using Artificial Intelligence Algorithm
Autorzy:
Lee, Min_Woo
Choi, Young-Sin
Kwon, Do-Hun
Cha, Eun-Ji
Kang, Hee-Bok
Jeong, Jae-In
Lee, Seok-Jae
Kim, Hwi-Jun
Powiązania:
https://bibliotekanauki.pl/articles/2176648.pdf
Data publikacji:
2022
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
Fe-based amorphous alloy
metalloid elements
artificial intelligence
coercivity
saturation magnetization
Opis:
Artificial intelligence operated with machine learning was performed to optimize the amount of metalloid elements (Si, B, and P) subjected to be added to a Fe-based amorphous alloy for enhancement of soft magnetic properties. The effect of metalloid elements on magnetic properties was investigated through correlation analysis. Si and P were investigated as elements that affect saturation magnetization while B was investigated as an element that affect coercivity. The coefficient of determination R2 (coefficient of determination) obtained from regression analysis by learning with the Random Forest Algorithm (RFR) was 0.95 In particular, the R2 value measured after including phase information of the Fe-Si-B-P ribbon increased to 0.98. The optimal range of metalloid addition was predicted through correlation analysis method and machine learning.
Źródło:
Archives of Metallurgy and Materials; 2022, 67, 4; 1539--1542
1733-3490
Pojawia się w:
Archives of Metallurgy and Materials
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-5 z 5

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies