Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Ivanova, Anna O." wg kryterium: Autor


Wyświetlanie 1-9 z 9
Tytuł:
Precise Upper Bound for the Strong Edge Chromatic Number of Sparse Planar Graphs
Autorzy:
Borodin, Oleg V.
Ivanova, Anna O.
Powiązania:
https://bibliotekanauki.pl/articles/30098005.pdf
Data publikacji:
2013-09-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
planar graph
edge coloring
2-distance coloring
strong edgecoloring
Opis:
We prove that every planar graph with maximum degree $ \Delta $ is strong edge $ (2 \Delta − 1)$-colorable if its girth is at least $ 40 [ \frac{\Delta}{2} ] +1 $. The bound $ 2 \Delta −1 $ is reached at any graph that has two adjacent vertices of degree $ \Delta $ .
Źródło:
Discussiones Mathematicae Graph Theory; 2013, 33, 4; 759-770
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
On the Weight of Minor Faces in Triangle-Free 3-Polytopes
Autorzy:
Borodin, Oleg V.
Ivanova, Anna O.
Powiązania:
https://bibliotekanauki.pl/articles/31340872.pdf
Data publikacji:
2016-08-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
plane map
plane graph
3-polytope
structural property
weight of face
Opis:
The weight w(f) of a face f in a 3-polytope is the degree-sum of vertices incident with f. It follows from Lebesgue’s results of 1940 that every triangle-free 3-polytope without 4-faces incident with at least three 3-vertices has a 4-face with w ≤ 21 or a 5-face with w ≤ 17. Here, the bound 17 is sharp, but it was still unknown whether 21 is sharp. The purpose of this paper is to improve this 21 to 20, which is best possible.
Źródło:
Discussiones Mathematicae Graph Theory; 2016, 36, 3; 603-619
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
All Tight Descriptions of 3-Stars in 3-Polytopes with Girth 5
Autorzy:
Borodin, Oleg V.
Ivanova, Anna O.
Powiązania:
https://bibliotekanauki.pl/articles/31342193.pdf
Data publikacji:
2017-02-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
3-polytope
planar graph
structure properties
k -star
Opis:
Lebesgue (1940) proved that every 3-polytope P5 of girth 5 has a path of three vertices of degree 3. Madaras (2004) refined this by showing that every P5 has a 3-vertex with two 3-neighbors and the third neighbor of degree at most 4. This description of 3-stars in P5s is tight in the sense that no its parameter can be strengthened due to the dodecahedron combined with the existence of a P5 in which every 3-vertex has a 4-neighbor. We give another tight description of 3-stars in P5s: there is a vertex of degree at most 4 having three 3-neighbors. Furthermore, we show that there are only these two tight descriptions of 3-stars in P5s. Also, we give a tight description of stars with at least three rays in P5s and pose a problem of describing all such descriptions. Finally, we prove a structural theorem about P5s that might be useful in further research.
Źródło:
Discussiones Mathematicae Graph Theory; 2017, 37, 1; 5-12
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Describing Neighborhoods of 5-Vertices in 3-Polytopes with Minimum Degree 5 and Without Vertices of Degrees from 7 to 11
Autorzy:
Borodin, Oleg V.
Ivanova, Anna O.
Kazak, Olesya N.
Powiązania:
https://bibliotekanauki.pl/articles/31342287.pdf
Data publikacji:
2018-08-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
planar graph
structure properties
3-polytope
neighborhood
Opis:
In 1940, Lebesgue proved that every 3-polytope contains a 5-vertex for which the set of degrees of its neighbors is majorized by one of the following sequences: (6, 6, 7, 7, 7), (6, 6, 6, 7, 9), (6, 6, 6, 6, 11), (5, 6, 7, 7, 8), (5, 6, 6, 7, 12), (5, 6, 6, 8, 10), (5, 6, 6, 6, 17), (5, 5, 7, 7, 13), (5, 5, 7, 8, 10), (5, 5, 6, 7, 27), (5, 5, 6, 6, ∞), (5, 5, 6, 8, 15), (5, 5, 6, 9, 11), (5, 5, 5, 7, 41), (5, 5, 5, 8, 23), (5, 5, 5, 9, 17), (5, 5, 5, 10, 14), (5, 5, 5, 11, 13). In this paper we prove that every 3-polytope without vertices of degree from 7 to 11 contains a 5-vertex for which the set of degrees of its neighbors is majorized by one of the following sequences: (5, 5, 6, 6, ∞), (5, 6, 6, 6, 15), (6, 6, 6, 6, 6), where all parameters are tight.
Źródło:
Discussiones Mathematicae Graph Theory; 2018, 38, 3; 615-625
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
An Extension of Kotzig’s Theorem
Autorzy:
Aksenov, Valerii A.
Borodin, Oleg V.
Ivanova, Anna O.
Powiązania:
https://bibliotekanauki.pl/articles/31340608.pdf
Data publikacji:
2016-11-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
plane graph
normal plane map
structural property
weight
Opis:
In 1955, Kotzig proved that every 3-connected planar graph has an edge with the degree sum of its end vertices at most 13, which is tight. An edge uv is of type (i, j) if d(u) ≤ i and d(v) ≤ j. Borodin (1991) proved that every normal plane map contains an edge of one of the types (3, 10), (4, 7), or (5, 6), which is tight. Cole, Kowalik, and Škrekovski (2007) deduced from this result by Borodin that Kotzig’s bound of 13 is valid for all planar graphs with minimum degree δ at least 2 in which every d-vertex, d ≥ 12, has at most d − 11 neighbors of degree 2. We give a common extension of the three above results by proving for any integer t ≥ 1 that every plane graph with δ ≥ 2 and no d-vertex, d ≥ 11+t, having more than d − 11 neighbors of degree 2 has an edge of one of the following types: (2, 10+t), (3, 10), (4, 7), or (5, 6), where all parameters are tight.
Źródło:
Discussiones Mathematicae Graph Theory; 2016, 36, 4; 889-897
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
More About the Height of Faces in 3-Polytopes
Autorzy:
Borodin, Oleg V.
Bykov, Mikhail A.
Ivanova, Anna O.
Powiązania:
https://bibliotekanauki.pl/articles/31342325.pdf
Data publikacji:
2018-05-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
plane map
planar graph
3-polytope
structural properties
height of face
Opis:
The height of a face in a 3-polytope is the maximum degree of its incident vertices, and the height of a 3-polytope, h, is the minimum height of its faces. A face is pyramidal if it is either a 4-face incident with three 3-vertices, or a 3-face incident with two vertices of degree at most 4. If pyramidal faces are allowed, then h can be arbitrarily large, so we assume the absence of pyramidal faces in what follows. In 1940, Lebesgue proved that every quadrangulated 3-polytope has h ≤ 11. In 1995, this bound was lowered by Avgustinovich and Borodin to 10. Recently, Borodin and Ivanova improved it to the sharp bound 8. For plane triangulation without 4-vertices, Borodin (1992), confirming the Kotzig conjecture of 1979, proved that h ≤ 20, which bound is sharp. Later, Borodin (1998) proved that h ≤ 20 for all triangulated 3-polytopes. In 1996, Horňák and Jendrol’ proved for arbitrarily polytopes that h ≤ 23. Recently, Borodin and Ivanova obtained the sharp bounds 10 for trianglefree polytopes and 20 for arbitrary polytopes. In this paper we prove that any polytope has a face of degree at most 10 with height at most 20, where 10 and 20 are sharp.
Źródło:
Discussiones Mathematicae Graph Theory; 2018, 38, 2; 443-453
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Low 5-Stars at 5-Vertices in 3-Polytopes with Minimum Degree 5 and No Vertices of Degree from 7 to 9
Autorzy:
Borodin, Oleg V.
Bykov, Mikhail A.
Ivanova, Anna O.
Powiązania:
https://bibliotekanauki.pl/articles/31348144.pdf
Data publikacji:
2020-11-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
planar map
planar graph
3-polytope
structural properties
5-star
weight
height
Opis:
In 1940, Lebesgue gave an approximate description of the neighborhoods of 5-vertices in the class $P_5$ of 3-polytopes with minimum degree 5. Given a 3-polytope $P$, by $h_5(P)$ we denote the minimum of the maximum degrees (height) of the neighborhoods of 5-vertices (minor 5-stars) in $P$. Recently, Borodin, Ivanova and Jensen showed that if a polytope $P$ in $P_5$ is allowed to have a 5-vertex adjacent to two 5-vertices and two more vertices of degree at most 6, called a (5, 5, 6, 6, ∞)-vertex, then $h_5(P)$ can be arbitrarily large. Therefore, we consider the subclass \(P_5^\ast\) of 3-polytopes in $P_5$ that avoid (5, 5, 6, 6, ∞)-vertices. For each $P^\ast$ in $P_5^\ast$ without vertices of degree from 7 to 9, it follows from Lebesgue’s Theorem that $h_5(P^\ast) ≤ 17$. Recently, this bound was lowered by Borodin, Ivanova, and Kazak to the sharp bound $h_5(P^\ast) ≤ 15$ assuming the absence of vertices of degree from 7 to 11 in $P^\ast$. In this note, we extend the bound $h_5(P^\ast) ≤ 15$ to all $P^\ast$s without vertices of degree from 7 to 9.
Źródło:
Discussiones Mathematicae Graph Theory; 2020, 40, 4; 1025-1033
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
5-stars of low weight in normal plane maps with minimum degree 5
Autorzy:
Borodin, Oleg V.
Ivanova, Anna O.
Jensen, Tommy R.
Powiązania:
https://bibliotekanauki.pl/articles/30148303.pdf
Data publikacji:
2014-08-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
graph
plane map
vertex degree
weight
light subgraph
Opis:
It is known that there are normal plane maps $M_5$ with minimum degree 5 such that the minimum degree-sum $w(S_5)$ of 5-stars at 5-vertices is arbitrarily large. In 1940, Lebesgue showed that if an $M_5$ has no 4-stars of cyclic type (5, 6, 6, 5) centered at 5-vertices, then $w(S_5) ≤ 68$. We improve this bound of 68 to 55 and give a construction of a (5, 6, 6, 5)-free $M_5$ with $w(S_5) = 48$.
Źródło:
Discussiones Mathematicae Graph Theory; 2014, 34, 3; 539-546
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Light Minor 5-Stars in 3-Polytopes with Minimum Degree 5 and No 6-Vertices
Autorzy:
Borodin, Oleg V.
Ivanova, Anna O.
Vasil’eva, Ekaterina I.
Powiązania:
https://bibliotekanauki.pl/articles/31348169.pdf
Data publikacji:
2020-11-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
planar map
planar graph
3-polytope
structural properties
5-star
weight
height
Opis:
In 1940, Lebesgue gave an approximate description of the neighborhoods of 5-vertices in the class P5 of 3-polytopes with minimum degree 5. Given a 3-polytope P, by w(P) denote the minimum of the degree-sum (weight) of the neighborhoods of 5-vertices (minor 5-stars) in P. In 1996, Jendrol’ and Madaras showed that if a polytope P in P5 is allowed to have a 5-vertex adjacent to four 5-vertices, then w(P) can be arbitrarily large. For each P in P5 without vertices of degree 6 and 5-vertices adjacent to four 5-vertices, it follows from Lebesgue’s Theorem that w(P) ≤ 68. Recently, this bound was lowered to w(P) ≤ 55 by Borodin, Ivanova, and Jensen and then to w(P) ≤ 51 by Borodin and Ivanova. In this note, we prove that every such polytope P satisfies w(P) ≤ 44, which bound is sharp.
Źródło:
Discussiones Mathematicae Graph Theory; 2020, 40, 4; 985-994
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-9 z 9

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies