Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Fotowicz, P." wg kryterium: Autor


Tytuł:
Metody obliczania niepewności pomiaru
Methods of calculation uncertainty in measurement
Autorzy:
Korczyński, M. J.
Fotowicz, P.
Hetman, A.
Gozdur, R.
Hłobaż, A.
Powiązania:
https://bibliotekanauki.pl/articles/156135.pdf
Data publikacji:
2005
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
metody obliczania
niepewność pomiaru
uncertainty in measurement
methods of calculation
Opis:
Obliczanie niepewności wyniku pomiaru jest jednym z podstawowych i ważniejszych zagadnień w metrologii. W niniejszym artykule przedstawiono metody obliczania niepewności pomiaru opracowane i stosowane przez autorów, które pozostają w zgodnosci z zaleceniami organizacji metrologicznych. Osiągnięciem autorów, jest opracowanie sczegółowych algorytmów postepowania przy obliczaniu niepewności wyniku pomiaru. Autorzy stosują zarówno metody przybliżone jak i dokładne w oparciu o propagację niepewności i rozkładów stosując symulację Monte Carlo.
Calculation of uncertainties is one of basic and very important problem in metrology. The methods for calculating the measurement uncertainty elaborated be authors are presented in the paper. Authors are using both: precise methods and estimated methods and both law of propagation uncertainty and propagation of distributions with an application of Monte Carlo simulation.
Źródło:
Pomiary Automatyka Kontrola; 2005, R. 51, nr 2, 2; 13-16
0032-4140
Pojawia się w:
Pomiary Automatyka Kontrola
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Sieciowy system informatyczny do obliczania niepewności pomiaru
Modern techniques in the process of metrology personnel recruitment and competence evaluation
Autorzy:
Korczyński, M. J.
Fotowicz, P.
Hetman, A.
Hłobaż, A.
Lewandowski, D.
Powiązania:
https://bibliotekanauki.pl/articles/152495.pdf
Data publikacji:
2007
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
niepewności
błędy pomiarowe
obliczanie niepewności
uncertainties
errors
calculation of uncertainties
Opis:
W artykule opisano sieciowy system informatyczny do obliczania niepewności pomiaru. Obliczenia wykonywane są przy zastosowaniu metody szybkiej transformaty Fouriera, realizującej operację splotu matematycznego funkcji gęstości prawdopodobieństwa błędów, charakteryzujących wielkości wejściowe, elementów składowych równania pomiaru.
The informatical network system to calculate measurement uncertainty is described in the paper. The Fast Fourier Transform Method is applied to calculate convolution of probability density functions, which describe dispersion of errors of quantities forming measurement equation.
Źródło:
Pomiary Automatyka Kontrola; 2007, R. 53, nr 2, 2; 25-27
0032-4140
Pojawia się w:
Pomiary Automatyka Kontrola
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Alternatywne metodyki obliczania niepewności pomiaru
Alternative methodologies for calculating the measurement uncertainty
Autorzy:
Fotowicz, P.
Powiązania:
https://bibliotekanauki.pl/articles/153031.pdf
Data publikacji:
2010
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
niepewność pomiaru
prawdopodobieństwo warunkowe
measurement uncertainty
conditional probability
Opis:
Przedstawiono dwie alternatywne metodyki obliczania niepewności pomiaru stosowane współcześnie w metrologii. Pierwsza z nich opiera się na zaleceniach Przewodnika i zawartym tam prawie propagacji niepewności. Druga opiera się na prawdopodobieństwie warunkowym wynikającym z zastosowania twierdzenia Bayesa. Obie metodyki prowadzą do różnych wyników, bowiem wykorzystują inne podstawy obliczeniowe. Pierwsza opiera się na splocie rozkładów wielkości wejściowych, a druga na ich iloczynie. Pierwsza chętnie stosowana jest przy ocenie wyników określonego pomiaru, a druga przy opracowaniu wyników porównań.
The alternative methodologies for calculating the measurement uncertainty used in modern metrology are presented. The first method is based on recommendation of the Guide and the law of uncertainty propagation. The second method is based on conditional probability and application of the Bayes theorem. Those methodologies leads to different results because of using different basis of calculations. The calculation of the first method is connected with convolution of input quantity distributions but the calculation of the second method is connected with multiplication of input quantity distributions. The coverage interval calculated with the GUM method is larger than the coverage interval calculated with the Bayesian method. In the first method the estimate of the measurand is an arithmetic average of observations, but in the second method the estimate is a weighted average, modified by the standard uncertainty attributed to the specified result of observation. The Bayesian method is willingly utilized at inter-laboratory comparisons, but the GUM method is commonly used in evaluation of any other result of measurement.
Źródło:
Pomiary Automatyka Kontrola; 2010, R. 56, nr 11, 11; 1305-1307
0032-4140
Pojawia się w:
Pomiary Automatyka Kontrola
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Application Of Bias Randomization In Evaluation Of Measuring Instrument Capability
Autorzy:
Fotowicz, P.
Powiązania:
https://bibliotekanauki.pl/articles/220973.pdf
Data publikacji:
2015
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
measurement uncertainty
bias randomization
measuring instrument capability
Opis:
The paper deals with the problem of bias randomization in evaluation of the measuring instrument capability. The bias plays a significant role in assessment of the measuring instrument quality. Because the measurement uncertainty is a comfortable parameter for evaluation in metrology, the bias may be treated as a component of the uncertainty associated with the measuring instrument. The basic method for calculation of the uncertainty in modern metrology is propagation of distributions. Any component of the uncertainty budget should be expressed as a distribution. Usually, in the case of a systematic effect being a bias, the rectangular distribution is assumed. In the paper an alternative randomization method using the Flatten-Gaussian distribution is proposed.
Źródło:
Metrology and Measurement Systems; 2015, 22, 4; 513-520
0860-8229
Pojawia się w:
Metrology and Measurement Systems
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Historyczna droga kształtowania się teorii niepewności pomiaru
Historical way of the measurement uncertainty theory
Autorzy:
Fotowicz, P.
Powiązania:
https://bibliotekanauki.pl/articles/156950.pdf
Data publikacji:
2013
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
niepewność pomiaru
historia metrologii
measurement uncertainty
history of metrology
Opis:
Przedstawiono historyczną drogę kształtowania się teorii niepewności pomiaru na przestrzeni dwóch stuleci. Droga ta zaczyna się od wnioskowań Gaussa i Laplacea co do rozkładu błędu w postaci krzywej dzwonowej, wzbogacona przez rozwiązanie Gosseta, w postaci rozkładu Studenta dla skończonej liczby serii obserwacji i uogólnienie tego rozwiązania przez Welcha i Satterthwaitea. Rozwiązania te znalazły odbicie w teorii niepewności sformułowanej w pracy Dietricha, na które powołują się autorzy Przewodnika wyrażania niepewności pomiaru, opracowanego pod koniec XX wieku.
The paper describes a historical way formulating the measurement uncertainty theory. The first achievements were: Gauss’s law of error propagation in 1809 and Laplace’s statement of the central limit theorem in 1810. This achievement leads to normal density function as the basis distribution for population of measurement data. The inference of normal distribution for measurand confirms the Airy’s work in 1875 using the term “uncertainty”, and formulates the law uncertainty propagation. The second step was a Gosset’s distribution of a probable error for the mean in 1908, called as a Student distribution. The generalization of this solution was a paper by Welch and Satterthwaite concerning a distribution for the measurand defined by a linear measurement function. The distribution was a Student distribution with effective degree of freedom. The above approach was used by Dietrich to formulate the general theory of uncertainty. The basic assumption of this theory is an equal treating of random and systematic uncertainties in a probabilistic way. His work was a basic reference for the Guide to express the uncertainty in measurements, published in 1995.
Źródło:
Pomiary Automatyka Kontrola; 2013, R. 59, nr 5, 5; 387-389
0032-4140
Pojawia się w:
Pomiary Automatyka Kontrola
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Historyczne aspekty wyrażania niepewności pomiaru
Historical aspects of expressing the measurement uncertainty
Autorzy:
Fotowicz, P.
Powiązania:
https://bibliotekanauki.pl/articles/276582.pdf
Data publikacji:
2012
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Automatyki i Pomiarów
Tematy:
teoria błędu
niepewność pomiaru
error theory
measurement uncertainty
Opis:
Historyczne podstawy dotyczące analizy danych pomiarowych pojawiły się już XIX wieku. Ukształtowały się w postaci metody najmniejszych kwadratów, prawa propagacji błędu i centralnego twierdzenia granicznego. Uzupełniały je o wnioskowania dotyczące przestawiania błędu pomiaru w postaci histogramu. Rozwiązania te uzasadniają współczesne podejście w dziedzinie opracowania wyniku pomiaru, opisujące wielkość mierzoną rozkładem prawdopodobieństwa.
Historical basics concerning the analysis of a measurement data were appeared in XIX century. They were formulated as a method of least squares, law of error propagation and central limit theorem. The inference treating measurement error as a histogram and expressing it as a uncertainty was also completed. Nowadays this approach justifies expressing the measurement result as a measurand described by the probability distribution.
Źródło:
Pomiary Automatyka Robotyka; 2012, 16, 2; 538-539
1427-9126
Pojawia się w:
Pomiary Automatyka Robotyka
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Historyczne źródła teorii błędu i niepewności pomiaru
Historical sources of error theory and measurement uncertainty
Autorzy:
Fotowicz, P.
Powiązania:
https://bibliotekanauki.pl/articles/277274.pdf
Data publikacji:
2012
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Automatyki i Pomiarów
Tematy:
teoria błędu
niepewność pomiaru
error theory
measurement uncertainty
Opis:
W artykule przedstawiono historyczne podstawy kształtowania się myśli metrologicznej związanej z opracowaniem danych pomiarowych. Omówiono zasadnicze osiągnięcia tych rozważań w postaci metody najmniejszych kwadratów, prawa propagacji błędu i centralnego twierdzenia granicznego. Uzupełniono je o wnioskowanie dotyczące przedstawiania błędu pomiaru w postaci histogramu i wyrażania go przez niepewność. Rozważania takie publikowano już w XIX wieku. Uzasadniają one współczesne podejście opisujące wyniki pomiaru wielkości mierzonej (mezurandu) rozkładem prawdopodobieństwa.
Historical basics of metrological conceptions concerning the evaluation of measurement data are presented. The method of least squares, law of error propagation and central limit theorem as a historical achievement are discussed. The inference treating measurement error as a histogram and expressing it as a uncertainty are completed. This approach was published in XIX century, and nowadays justifies expressing the measurement result as a measurand described by the probability distribution.
Źródło:
Pomiary Automatyka Robotyka; 2012, 16, 7-8; 72-75
1427-9126
Pojawia się w:
Pomiary Automatyka Robotyka
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Metoda randomizacji oddziaływania systematycznego i jej praktyczne zastosowanie
Method of randomization of systematic effect and its application
Autorzy:
Fotowicz, P.
Powiązania:
https://bibliotekanauki.pl/articles/155836.pdf
Data publikacji:
2011
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
niepewność pomiaru
oddziaływanie systematyczne
measurement uncertainty
systematic effect
Opis:
Przedstawiono metodę randomizacji oddziaływania systematycznego zawierającego dwie składowe, w postaci odchylenia pomiarowego i niepewności jego wyznaczenia. Oddziaływanie systematyczne tworzy zmienną losową, opisaną centrowanym rozkładem płasko-normalnym. Rozkład ten jest splotem rozkładu prostokątnego z normalnym. Dzięki temu możliwy jest łatwy opis analityczny, jak również numeryczny, przyjętego rozwiązania. Obliczenia niepewności standardowej i współczynnika rozszerzenia tak zdefiniowanej zmiennej losowej nie są skomplikowane i mogą być łatwo implementowane do praktyki metrologicznej.
The paper concerns a problem of randomization of the systematic effect being a part of the coverage interval associated with the measurement result. This effect is characterized by two components: systematic and random. The systematic component is estimated by the bias and the random component is estimated by the uncertainty associated with the bias. Taking into consideration these two components, there can be created a random variable with zero expectation and the standard deviation calculated by randomizing the systematic effect. The method of randomization of the systematic effect is based on the Flatten-Gaussian distribution. The standard uncertainty, being the basic parameter of the systematic effect, can be calculated with a simple mathematical formula, represented by (9). The numerical formula (11) can be also used for calculation of this standard uncertainty with a random generator represented by (12). The pre-sented evaluation of the uncertainty is more rational than those obtained with use of other methods, represented in literature [11-13]. It is useful for practical metrological application.
Źródło:
Pomiary Automatyka Kontrola; 2011, R. 57, nr 11, 11; 1293-1296
0032-4140
Pojawia się w:
Pomiary Automatyka Kontrola
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Metody obliczania współczynnika rozszerzania w oparciu o splot rozkładu prostokatnego z normalnym
Methods of the coverage factor evaluation basing on the convolution of rectangular and normal distributions
Autorzy:
Fotowicz, P.
Powiązania:
https://bibliotekanauki.pl/articles/151953.pdf
Data publikacji:
2004
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
rozkład prawdopodobieństwa
splot
niepewność pomiarowa
niepewność rozszerzona
współczynnik rozszerzenia
uncertainty in measurement
probability distribution
convolution
expanded uncertainty
coverage factor evaluation
Opis:
Przedstawiono dwie metody wyznaczania współczynnika rozszerzenia w procedurach szacowania niepewności pomiaru przy wzorcowaniu. Metody polegają na przybliżeniu nieznanego rozkładu wielkości mierzonej rozkładem typu PN, który jest splotem pojedynczego rozkładu prostokątnego i normalnego. Metody można stosować gdy wielkości wejściowe opisane są rozkładem prostokatnym lub normalnym. Błąd metod przy wyznaczaniu współczynnika rozszerzenia dla poziomu ufnosi 95% na ogół zawarty jest w granicach +lub- 1%.
Two methods for evaluation of coverage factor in procedure for calculating the uncertainty of measurement in calibration is presented. Methods based on approximation of unknown probability distribution of measured by RN distribution. The RN distribution is a convolution of rectangular and normal distributions. Methods may be applied when all input quantities have rectangular and normal distributions and coverage factor is corresponding to confidence level of 95%. The error of coverage factor corresponding to confidence level of 95% is usually +or-1%.
Źródło:
Pomiary Automatyka Kontrola; 2004, R. 50, nr 4, 4; 13-16
0032-4140
Pojawia się w:
Pomiary Automatyka Kontrola
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Modyfikacja sposobu obliczania niepewności pomiaru
Modifying the Approach for Calculating the Measurement Uncertainty
Autorzy:
Fotowicz, P.
Powiązania:
https://bibliotekanauki.pl/articles/276174.pdf
Data publikacji:
2016
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Automatyki i Pomiarów
Tematy:
niepewność pomiaru
prawo propagacji niepewności
propagacja rozkładów
measurement uncertainty
law of uncertainty propagation
propagation of distributions
Opis:
Wspólny Komitet ds. Przewodników w Metrologii JCGM zaproponował zmianę podejścia dotyczącą obliczania niepewności pomiaru przy wykorzystaniu prawa propagacji niepewności. Celem jest zbliżenie uzyskiwanych wyników obliczania niepewności standardowej wielkości wyjściowej z wynikiem otrzymywanym przy zastosowaniu zasady propagacji rozkładów za pomocą metody Monte Carlo. W artykule przedstawiono skutki przyjęcia nowych zasad obliczania niepewności standardowej podczas wyznaczania błędu przyrządu pomiarowego.
Joint Committee for Guides in Metrology JCGM proposed the change of an approach for calculating the measurement uncertainty using the law of propagation of uncertainty. The purpose is a comparison between the results of a standard uncertainty calculation of the output quantity with the use of the law of propagation and applying the propagation of distributions using a Monte Carlo method. In the article a results of the adoption of new approach for calculating the standard uncertainty of the measuring instrument error is presented.
Źródło:
Pomiary Automatyka Robotyka; 2016, 20, 3; 29-32
1427-9126
Pojawia się w:
Pomiary Automatyka Robotyka
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Obliczanie niepewności pomiaru zgodne z definicją przedziału rozszerzenia na przykładzie opracowania wyniku wzorcowania mikrometru
Calculation of measurement uncertainty according to the definition of the coverage interval exemplified by evaluation of uncertainty in calibration of a micrometer
Autorzy:
Fotowicz, P.
Powiązania:
https://bibliotekanauki.pl/articles/277603.pdf
Data publikacji:
2010
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Automatyki i Pomiarów
Tematy:
niepewność pomiaru
wzorcowanie
mikrometr
measurement uncertainty
calibration
micrometer
Opis:
W artykule przedstawiono obliczenia niepewności rozszerzonej metodą numeryczną i analityczną. Obie metody umożliwiają wyznaczanie niepewności zgodnie z przyjętą definicją przedziału rozszerzenia zawartą w najnowszym dokumencie normatywnym. Metoda numeryczna polega na symulacji Monte Carlo, a metoda analityczna bazuje na przybliżeniu operacji splotu rozkładów wielkości wejściowych, poprzez model matematyczny dla wielkości wyjściowej. Obie metody prowadzą do tego samego rezultatu obliczeniowego i można jej realizować przy użyciu arkusza kalkulacyjnego. Metody zilustrowano przykładem dotyczącym opracowania wyniku pomiaru przy wzorcowaniu przyrządu pomiarowego, w postaci mikrometru.
The article presents calculation of measurement uncertainty with the use of the numerical method and the analytical approach. Both methods enable evaluation of uncertainty according to the definition of the coverage interval contained in a recent normative document. Numerical method is based on the Monte Carlo simulation and the analytical method makes use of an approximation of the convolution of distributions of input quantities by making a mathematical model of the output quantity. Both methods lead to the same numerical results and may be implemented with the use of spreadsheet software. Both methods are exemplified by evaluation of uncertainty in calibration of a measuring instrument, such as a micrometer.
Źródło:
Pomiary Automatyka Robotyka; 2010, 14, 10; 48-52
1427-9126
Pojawia się w:
Pomiary Automatyka Robotyka
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Od krzywej błędu do menzurandu
Autorzy:
Fotowicz, P.
Powiązania:
https://bibliotekanauki.pl/articles/1425582.pdf
Data publikacji:
2014
Wydawca:
Główny Urząd Miar
Tematy:
dane pomiarowe
opracowanie danych
błędy pomiarowe
measurement data
data processing
measurement errors
Opis:
Metodyka opracowania danych pomiarowych ma już swoją długą historię. Zaczyna się wraz z wykonywaniem pomiarów w sposób naukowy i rozwojem myśli matematycznej. Współcześnie kojarzona jest z pojęciem niepewności pomiaru, jako matematycznego parametru związanego ze zmienną losową. Pierwotnie odnosiła się do zagadnienia zmienności błędu pomiaru w postaci krzywej jego rozkładu. Obecnie odnosi się do pojęcia menzurandu jako matematycznego opisu każdego pomiaru, niezależnie od stopnia jego złożoności. To podejście pozwala na przedstawienie wyniku pomiaru w postaci zbioru możliwych wartości dla wielkości mierzonej, obliczanej na postawie modelu pomiaru, którego składowymi są zmienne losowe o określonych rozkładach prawdopodobieństwa.
Evaluation of measurement data in metrology is associated with term of measurement uncertainty. The measurement uncertainty is a parameter characterizing the dispersion of the quantity values being attributed to a measurand. The measurand is a quantity intended to be measured and is expressed as an output quantity in a measurement model. This quantity is treated as a set of possible values expressing a measurement result. Mathematically the measurand is a random variable calculated by the propagation of distributions through the measurement model. Usually, the measurement model is the form of measurement equation consists of many components. Any component is also a random variable with a prescribed probability distribution. One component is associated with a series of observations as a random effect, but another components are an systematic effect. Historically, the first of this components was associated with curve of error.
Źródło:
Metrologia i Probiernictwo : biuletyn Głównego Urzędu Miar; 2014, 4 (7); 14--21
2300-8806
Pojawia się w:
Metrologia i Probiernictwo : biuletyn Głównego Urzędu Miar
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Omówienie międzynarodowego dokumentu JCGM 102:2011 dotyczącego wyrażania niepewności pomiaru
Autorzy:
Fotowicz, P.
Powiązania:
https://bibliotekanauki.pl/articles/1426219.pdf
Data publikacji:
2014
Wydawca:
Główny Urząd Miar
Tematy:
niepewność pomiaru
wielowymiarowy model pomiaru
metoda Monte Carlo
measurement uncertainty
multivariate measurement model
Monte Carlo method
Opis:
Dokument JCGM 102:2011 jest rozwinięciem metodyki opracowania danych pomiarowych przedstawionej w opracowaniu JCGM 101:2008. Dotyczy wielowymiarowego modelu pomiaru, czyli takiego w którym występuje dowolna liczba wielkości wyjściowych. Wielkości te są wzajemnie skorelowane, gdyż zależą od tych samych wielkości wejściowych. Dokument przedstawia prawo propagacji niepewności w postaci macierzowej. Uogólnia też zastosowanie metody Monte Carlo w celu numerycznego wyznaczania wspólnego rozkładu prawdopodobieństwa dla wielkości wyjściowej wielowymiarowego modelu pomiaru. Na ich podstawie można wyznaczyć obszar rozszerzenia, będący odpowiednikiem przedziału rozszerzenia dla jednowymiarowego modelu pomiaru, który odpowiada określonemu prawdopodobieństwu. Obszar ten może przybierać postać hiperelipsy lub hiperprostokąta. Dokument przedstawia również procedurę obliczeniową wyznaczania najmniejszego obszaru rozszerzenia.
The document describes a generalization of the Monte Carlo method for measurement models having any number of input quantities and any number of output quantities. Two approaches are considered for treating such models. The first approach is a generalization of the Guide uncertainty framework. The second is a Monte Carlo method as an implementation of the propagation of distributions. Guidance is also given on the determination of a coverage region for the output quantities of a multivariate model, the counterpart of a coverage interval for a single scalar output quantity, corresponding to a stipulated coverage probability. The guidance includes the provision of coverage regions that take the form of hyper-ellipsoids and hyper-rectangles. A calculation procedure is also described for obtaining an approximation to the smallest coverage region.
Źródło:
Metrologia i Probiernictwo : biuletyn Głównego Urzędu Miar; 2014, 3 (6); 17-20
2300-8806
Pojawia się w:
Metrologia i Probiernictwo : biuletyn Głównego Urzędu Miar
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Przedział ufności a błąd systematyczny pomiaru
Coverage interval and systematic effect
Autorzy:
Fotowicz, P.
Powiązania:
https://bibliotekanauki.pl/articles/156664.pdf
Data publikacji:
2007
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
niepewność pomiaru
measurement uncertainty
Opis:
Referat omawia zagadnienie randomizacji oddziaływani systematycznego do postaci zmiennej losowej. Oddziaływanie t traktowane jest jako część przedziału ufności związanego z wynikiem pomiaru. Przykładami takich oddziaływań najczęściej są błędy wskaza lub poprawki. Przedstawiono prostą i praktyczną metodę randomizacji.
The paper concerns the problem of treatment of the systematic effect as a random variable. This systematic effect is a part of the coverage interval of a measurement result. The simple randomization of a known systematic error as a bias or correction is presented. It is useful in practical metrological application.
Źródło:
Pomiary Automatyka Kontrola; 2007, R. 53, nr 9 bis, 9 bis; 29-30
0032-4140
Pojawia się w:
Pomiary Automatyka Kontrola
Dostawca treści:
Biblioteka Nauki
Artykuł

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies