Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Al Bakri Abdullah, Mohd Mustafa" wg kryterium: Autor


Tytuł:
Assessment of Geopolymer Concrete for Underwater Concreting Properties
Autorzy:
Zaidi, Fakhryna Hannanee Ahmad
Ahmad, Romisuhani
Al Bakri Abdullah, Mohd Mustafa
Wan Ibrahim, Wan Mastura
Aziz, Ikmal Hakem
Junaidi, Subaer
Luhar, Salmabanu
Powiązania:
https://bibliotekanauki.pl/articles/2106595.pdf
Data publikacji:
2022
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
geopolymer
underwater concrete
fly ash
kaolin
Opis:
For ages, concrete has been used to construct underwater structures. Concrete laying underwater is a very complex procedure important to the success or failure of underwater projects. This paper elucidates the influence of alkali activator ratios on geopolymers for underwater concreting; focusing on the geopolymer concrete synthesized from fly ash and kaolin activated using sodium hydroxide and sodium silicate solutions. The geopolymer mixtures were designed to incorporate multiple alkali activator ratios to evaluate their effects on the resulting geopolymers’ properties. The fresh concrete was molded into 50 mm cubes in seawater using the tremie method and tested for its engineering properties at 7 and 28 days (curing). The control geopolymer and underwater geopolymers’ mechanical properties, such as compressive strength, water absorption density, and setting time were also determined. The differences between the control geopolymer and underwater geopolymer were determined using phase analysis and functional group analysis. The results show that the geopolymer samples were optimally strengthened at a 2.5 alkali activator ratio, and the mechanical properties of the control geopolymer exceeded that of the underwater geopolymer. However, the underwater geopolymer was determined to be suitable for use as underwater concreting material as it retains 70% strength of the control geopolymer.
Źródło:
Archives of Metallurgy and Materials; 2022, 67, 2; 677--684
1733-3490
Pojawia się w:
Archives of Metallurgy and Materials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Characterization of SnO2/TiO2 with the Addition of Polyethylene Glycol via Sol-Gel Method for Self-Cleaning Application
Autorzy:
Halin, Dewi Suriyani Che
Azliza, Azani
Razak, Kamrosni Abdul
Abdullah, Mohd Mustafa Al Bakri
Salleh, Mohd Arif Anuar Mohd
Wahab, Juyana A
Chobpattana, Varistha
Kaczmarek, Łukasz
Nabiałek, Marcin
Jeż, Bartłomiej
Powiązania:
https://bibliotekanauki.pl/articles/2203743.pdf
Data publikacji:
2023
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
TiO2
SnO2
thin film
polyethylene glycol
self-cleaning
Opis:
TiO2 is one of the most widely used metal oxide semiconductors in the field of photocatalysis for the self-cleaning purpose to withdraw pollutants. Polyethylene glycol (PEG) is recommended as a stabilizer and booster during preparation of water-soluble TiO2. Preparation of SnO2/TiO2 thin film deposition on the surface of ceramic tile was carried out by the sol-gel spin coating method by adding different amount of PEG (0g, 0.2g, 0.4g, 0.6g, 0.8g) during the preparation of the sol precursor. The effects of PEG content and the annealing temperature on the phase composition, crystallite size and the hydrophilic properties of SnO2/TiO2 films were studied. The X-ray diffraction (XRD) spectra revealed different phases existed when the films were annealed at different annealing temperatures of 350°C, 550°C and 750°C with 0.4 g of PEG addition. The crystallite sizes of the films were measured using Scherrer equation. It shows crystallite size was dependent on crystal structure existed in the films. The films with mixed phases of brookite and rutile shows the smallest crystallite size. In order to measure the hydrophilicity properties of films, the water contact angles for each film with different content of PEG were measured. It can be observed that the water contact angle decreased with the increasing of the content of PEG. It shows the superhydrophilicity properties for the films with the 0.8 g of PEG annealed at 750°C. This demonstrates that the annealed temperature and the addition of PEG affect the phase composition and the hydrophilicity properties of the films.
Źródło:
Archives of Metallurgy and Materials; 2023, 68, 1; 243--248
1733-3490
Pojawia się w:
Archives of Metallurgy and Materials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Crumb rubber geopolymer mortar at elevated temperature exposure
Autorzy:
Azmi, Ahmad Azrem
Abdullah, Mohd Mustafa Al Bakri
Ghazali, Che Mohd Ruzaidi
Ahmad, Romisuhani
Jaya, Ramadhansyah Putra
Rahim, Shayfull Zamree Abd
Almadani, Mohammad A.
Wysłocki, Jerzy J.
Śliwa, Agata
Sandu, Andrei Victor
Powiązania:
https://bibliotekanauki.pl/articles/2173997.pdf
Data publikacji:
2022
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
popiół lotny
zaprawa geopolimerowa
okruchy gumy
temperatura podwyższona
narażenie
fly ash
geopolymer mortar
crumb rubber
elevated temperature
exposure
Opis:
Low calcium fly ash is used as the main material in the mixture and the crumb rubber was used in replacing fine aggregates in geopolymer mortar. Sodium hydroxide (NaOH) and sodium silicate (Na2SiO3) which were high alkaline solution were incorporated as the alkaline solution. The fly ash reacted with the alkaline solution forming alumino-silicate gel that binds the aggregate to produce a geopolymer mortar. The loading of crumb rubber in the fly ash based geopolymer mortar was set at 0% (CRGM-0), 5% (CRGM-5), 10% (CRGM-10), 15% (CRGM-15), and 20% (CRGM-20), respectively. NaOH solution (12M) and Na2SiO3 solution ratio is set constant at 2.5 for all geopolymer mixture and the fly ash to alkali activator ratio was kept at 2.0. The CRGM at 28 days of curing time was exposed to elevated temperature at 200ºC, 400ºC, 600ºC and 800ºC. The weight loss of the CRGM increases with increasing temperature at all elevated temperatures. However, the density and compressive strength of CRGM decrease with an increase of crumb rubber loading for all elevated temperature exposure. The compressive strength of CRGM reduced due to the fact that rubber decomposes between 200ºC and 600ºC thereby creating voids. CRGM-15 and CRGM-20 showed cracks developed with rough surface at 800ºC. Image obtained from scanning electron microscope (SEM) showed that, the CRGM changed significantly due to the decomposition of crumb rubber and evaporation of the free water at 400ºC, 600ºC and 800ºC.
Źródło:
Archives of Civil Engineering; 2022, 68, 3; 87--105
1230-2945
Pojawia się w:
Archives of Civil Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Effect of bolt configurations on stiffness for steel-wood-steel connection loaded parallel to grain for softwoods in Malaysia
Autorzy:
Razim, Nur Liza
Sheng, Francis Ting Shyue
Karim, Abdul Razak Abdul
Nabialek, Marcin
Abdullah, Mohd Mustafa Al Bakri
Sroka, Marek
Powiązania:
https://bibliotekanauki.pl/articles/2174044.pdf
Data publikacji:
2022
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
sztywność
analiza elementów skończonych
połączenie śrubowe
połączenie stal-drewno-stal
drewno miękkie
Eurokod 5
stiffness
finite element analysis
bolt connection
steel-wood-steel connection
softwood
Eurocode 5
Opis:
Steel-wood-steel connection is widely seen in many applications, such as timber structures. The stiffness of steel-wood-steel connection loaded parallel to grain for softwoods originated from Malaysia was investigated in this study. Numerical models have been developed in ABAQUS to study the stiffness connection. Softwoods of Damar Minyak and Podo have been selected in this analysis. The comprehensive study focused on the effect of bolt configurations on stiffness. Numerical analysis is carried out and the developed model has been validated with the previous study. Further investigations have been made by using the validated model. From this model, numerical analysis of the stiffness values have been made for various bolt configurations, including bolt diameter, end distance, bolt spacing, number of rows and bolts and edge distance. The result shows that the stiffness of bolted timber connections for softwood depends on the bolt diameter, number of rows and bolts, end distance and edge distance. Based on the result, stiffness increased as the diameter of the bolt, end distance, number of rows and bolts and edge distance increased. It is also discovered that the stiffness equation in Eurocode 5 (EC5) is inadequate as the equation only considered parameters which are wood density and bolt diameter. Other connection parameters such as geometry are not considered in the EC5 equation.
Źródło:
Archives of Civil Engineering; 2022, 68, 3; 323--338
1230-2945
Pojawia się w:
Archives of Civil Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Effect of Naoh Molar Concentration on Microstructure and Compressive Strength of Dolomite/Fly Ash-Based Geopolymers
Autorzy:
Azimi, Emy Aizat
Salleh, Mohd M. A. A.
Abdullah, Mohd Mustafa Al Bakri
Aziz, Ikmal Hakem A.
Hussin, Kamarudin
Chaiprapa, Jitrin
Vizureanu, Petrica
Yoriya, Sorachon
Nabiałek, Marcin
Wyslocki, Jerzy J.
Powiązania:
https://bibliotekanauki.pl/articles/2125545.pdf
Data publikacji:
2022
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
dolomite/fly ash
geopolymer
NaOH concentration
synchrotron
micro-XRF
Opis:
Dolomite can be used as a source of aluminosilicate to produce geopolymers; however, this approach is limited by its low reactivity. This study analyzes the viability of producing geopolymers using dolomite/fly-ash with sodium silicate and NaOH solutions (at multiple concentrations) by determining the resultant geopolymers’ compressive strengths. The dolomite/fly-ash-based geopolymers at a NaOH concentration of ~22 M resulted in an optimum compressive strength of 46.38 MPa after being cured for 28 days, and the SEM and FTIR analyses confirmed the denser surface of the geopolymer matrix. The synchrotron micro-XRF analyses confirmed that the Ca concentration exceeded that of Si and Mg, leading to the formation of calcium silicate hydrate, which strengthens the resulting geopolymers.
Źródło:
Archives of Metallurgy and Materials; 2022, 67, 3; 993--998
1733-3490
Pojawia się w:
Archives of Metallurgy and Materials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Effect of Silica Fume and Alumina Addition on the Mechanical and Microstructure of Fly Ash Geopolymer Concrete
Autorzy:
Fong, Sue Min
Heah, Cheng Yong
Liew, Yun Ming
Abdullah, Mohd Mustafa Al Bakri
Hasniyati, Md Razi
Low, Foo Wah
Ng, Hui-Teng
Ng, Yong-Sing
Powiązania:
https://bibliotekanauki.pl/articles/2048824.pdf
Data publikacji:
2022
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
geopolymer
concrete
silica fume
alumina
Opis:
This paper discussed the effect of the addition of silica fume (2 wt.% and 4 wt.%) and alumina (2 wt.% and 4 wt.%) on the properties of fly ash geopolymer concrete. The fly ash geopolymer concrete achieved the highest 28-day compressive strength with 2 wt.% of silica fume (39 MPa) and 4 wt.% of alumina (41 MPa). The addition of 2 wt.% of silica fume increased the compressive strength by 105% with respect to the reference geopolymer (without additive). On the other hand, the compressive strength surged by 115% with 4 wt.% of alumina compared to the reference geopolymer. The addition of additives improved the compactness of the geopolymer matrix according to the morphology analysis.
Źródło:
Archives of Metallurgy and Materials; 2022, 67, 1; 197-202
1733-3490
Pojawia się w:
Archives of Metallurgy and Materials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Effect of Sodium Aluminate on the Fresh and Hardened Properties of Fly Ash-Based One-Part Geopolymer
Autorzy:
Ooi, Wan-En
Liew, Yun Ming
Heah, Cheng Yong
Ho, Li-Nge
Abdullah, Mohd Mustafa Al Bakri
Ong, Shee-Ween
Sandu, Andrei Victor
Powiązania:
https://bibliotekanauki.pl/articles/2106571.pdf
Data publikacji:
2022
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
geopolymer
one-part geopolymer
fly ash
sodium aluminate
sodium metasilicate
Opis:
The one-part geopolymer binder was synthesis from the mixing of aluminosilicate material with solid alkali activators. The properties of one-part geopolymers vary according to the type and amount of solid alkali activators used. This paper presents the effect of various sodium metasilicate-to-sodium aluminate (NaAlO2/Na2SiO3) ratios on fly ash-based one-part geopolymer. The NaAlO2/Na2SiO3 ratios were set at 1.0 to 3.0. Setting time of fresh one-part geopolymer was examined through Vicat needle apparatus. Mechanical and microstructural properties of developed specimens were analysed after 28 days of curing in ambient condition. The study concluded that an increase in NaAlO2 content delayed the setting time of one-part geopolymer paste. The highest compressive strength was achieved at the NaAlO2/Na2SiO3 ratio of 2.5, which was 33.65 MPa. The microstructural analysis revealed a homogeneous structure at the optimum ratio. While the sodium aluminium silicate hydrate (N-A-S-H) and anorthite phases were detected from the XRD analysis.
Źródło:
Archives of Metallurgy and Materials; 2022, 67, 2; 441--445
1733-3490
Pojawia się w:
Archives of Metallurgy and Materials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Effect of Solid-To-Liquids and Na2SiO3-To-NaOH Ratio on Metakaolin Membrane Geopolymers
Autorzy:
Ibrahim, Masdiyana
Wan Ibrahim, Wan Mastura
Al Bakri Abdullah, Mohd Mustafa
Sauffi, Ahmad Syauqi
Vizureanu, Petrica
Powiązania:
https://bibliotekanauki.pl/articles/2106597.pdf
Data publikacji:
2022
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
geopolymer
metakaolin membrane
porous geopolymer
solid-to-liquid (S/L) ratio
Na2SiO3/NaOH ratio
Opis:
Geopolymer is synthesized by polycondensation of SiO4 and AlO4 aluminosilicate complexes, tetrahedral frames linked with shared sialate oxygen. This paper studies the effect of the solids-to-fluids (S/L) and Na2SiO3/NaOH proportions on the preparing of metakaolin inorganic membrane geopolymer. By consolidating a mixture of metakaolin with sodium hydroxide, sodium silicate and foaming agent, the geopolymer membrane was made in required shape about 1 cm and cured at 80°C for 24 hours. After the curing process, the properties of the samples were tested on days 7. Sodium silicate (Na2SiO32SiO3
Źródło:
Archives of Metallurgy and Materials; 2022, 67, 2; 695--702
1733-3490
Pojawia się w:
Archives of Metallurgy and Materials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Enhancement of Tensile Properties of Glass Fibre Epoxy Laminated Composites Reinforced with Carbon Nanotubes interlayer using Electrospray Deposition
Autorzy:
Zakaria, Muhammad Razlan
Omar, Mohd Firdaus
Akil, Hazizan Md
Othman, Muhammad Bisyrul Hafi
Al Bakri Abdullah, Mohd Mustafa
Powiązania:
https://bibliotekanauki.pl/articles/2106596.pdf
Data publikacji:
2022
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
glass fibre
carbon nanotubes
hybrid material
epoxy laminated composites
Opis:
The introduction of carbon nanotubes (CNTs) onto glass fibre (GF) to create a hierarchical structure of epoxy laminated composites has attracted considerable interest due to their merits in improving performance and multifunctionality. Field emission scanning electron microscopy (FESEM) was used to analyze the woven hybrid GF-CNT. The results demonstrated that CNT was successfully deposited on the woven GF surface. Woven hybrid GF-CNT epoxy laminated composites were then prepared and compared with woven GF epoxy laminated composites in terms of their tensile properties. The results indicated that the tensile strength and tensile modulus of the woven hybrid GF-CNT epoxy laminated composites were improved by up to 9% and 8%, respectively compared to the woven hybrid GF epoxy laminated composites.
Źródło:
Archives of Metallurgy and Materials; 2022, 67, 2; 685--690
1733-3490
Pojawia się w:
Archives of Metallurgy and Materials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Experimental investigation of chopped steel wool fiber at various ratio reinforced cementitious composite panels
Autorzy:
Rmdan Amer, Akrm A.
Al Bakri Abdullah, Mohd Mustafa
Ming, Liew Yun
Aziz, Ikmal Hakem A.
Mohd Tahir, Muhammad Faheem
Abd Rahim, Shayfull Zamree
Amer, Hetham A. R.
Powiązania:
https://bibliotekanauki.pl/articles/1852332.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
włókno stalowe
włókno posiekane
wełna stalowa
kompozyt cementowy
płyta kompozytowa
nośność
steel fiber
chopped fiber
steel wool
cementitious composite
composite panel
load carrying capacity
Opis:
The flexural toughness of chopped steel wool fiber reinforced cementitious composite panels was investigated. Reinforced cementitious composite panels were produced by mixing of chopped steel wool fiber with a ratio range between 0.5% to 6.0% and 0.5% as a step increment of the total mixture weight, where the cement to sand ratio was 1:1.5 with water to cement ratio of 0.45. The generated reinforced cementitious panels were tested at 28 days in terms of load-carrying capacity, deflection capacities, post-yielding effects, and flexural toughness. The inclusion of chopped steel wool fiber until 4.5% resulted in gradually increasing load-carrying capacity and deflection capacities while, provides various ductility, which would simultaneously the varying of deflection capability in the post-yielding stage. Meanwhile, additional fiber beyond 4.5% resulted in decreased maximum load-carrying capacity and increase stiffness at the expense of ductility. Lastly, the inclusion of curves gradually.
Źródło:
Archives of Civil Engineering; 2021, 67, 3; 661-671
1230-2945
Pojawia się w:
Archives of Civil Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Finite Element Analysis on Structural Behaviour of Geopolymer Reinforced Concrete Beam using Johnson-Cook Damage in ABAQUS
Autorzy:
Mortar, Nurul Aida Mohd
Al Bakri Abdullah, Mohd Mustafa
Hussin, Kamarudin
Razak, Rafiza Abdul
Hamat, Sanusi
Hilmi, Ahmad Humaizi
Shahedan, Noorfifi Natasha
Li, Long Yuan
Aziz, Ikmal Hakem A.
Powiązania:
https://bibliotekanauki.pl/articles/2174588.pdf
Data publikacji:
2022
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
fly ash geopolymer
geopolymer concrete
finite element analysis
Johnson Cook Damage
ABAQUS software
Opis:
This paper details a finite element analysis of the behaviour of Si-Al geopolymer concrete beam reinforced steel bar under an impulsive load and hyper velocity speed up to 1 km/s created by an air blast explosion. The initial torsion stiffness and ultimate torsion strength of the beam increased with increasing compressive strength and decreasing stirrup ratio. The study involves building a finite element model to detail the stress distribution and compute the level of damage, displacement, and cracks development on the geopolymer concrete reinforcement beam. This was done in ABAQUS, where a computational model of the finite element was used to determine the elasticity, plasticity, concrete tension damages, concrete damage plasticity, and the viability of the Johnson-Cook Damage method on the Si-Al geopolymer concrete. The results from the numerical simulation show that an increase in the load magnitude at the midspan of the beam leads to a percentage increase in the ultimate damage of the reinforced geopolymer beams failing in shear plastic deformation. The correlation between the numerical and experimental blasting results confirmed that the damage pattern accurately predicts the response of the steel reinforcement Si-Al geopolymer concrete beams, concluded that decreasing the scaled distance from 0.298 kg/m3 to 0.149 kg/m3 increased the deformation percentage.
Źródło:
Archives of Metallurgy and Materials; 2022, 67, 4; 1349--1354
1733-3490
Pojawia się w:
Archives of Metallurgy and Materials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Flexural Properties of Thin Fly Ash Geopolymers at Elevated Temperature
Autorzy:
Ng, Yong-Sing
Liew, Yun Ming
Heah, Cheng Yong
Abdullah, Mohd Mustafa Al Bakri
Ng, Hui-Teng
Chan, Lynette Wei Ling
Powiązania:
https://bibliotekanauki.pl/articles/2134117.pdf
Data publikacji:
2022
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
thin geopolymer
fly ash
elevated temperature
flexural strength
Opis:
This paper reports on the flexural properties of thin fly ash geopolymers exposed to elevated temperature. The thin fly ash geopolymers (dimension = 160 mm × 40 mm × 10 mm) were synthesised using 12M NaOH solution mixed with designed solids-to-liquids ratio of 1:2.5 and Na2SiO3/NaOH ratio of 1:4 and underwent heat treatment at different elevated temperature (300°C, 600°C, 900°C and 1150°C) after 28 days of curing. Flexural strength test was accessed to compare the flexural properties while X-Ray Diffraction (XRD) analysis was performed to determine the phase transformation of thin geopolymers at elevated temperature. Results showed that application of heat treatment boosted the flexural properties of thin fly ash geopolymers as the flexural strength increased from 6.5 MPa (room temperature) to 16.2 MPa (1150°C). XRD results showed that the presence of crystalline phases of albite and nepheline contributed to the increment in flexural strength.
Źródło:
Archives of Metallurgy and Materials; 2022, 67, 3; 1145--1150
1733-3490
Pojawia się w:
Archives of Metallurgy and Materials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Hierarchical Carbon Fiber-Carbon Nanotubes by Using Electrospray Deposition Method with Preserved Tensile Properties
Autorzy:
Zakaria, Muhammad Razlan
Akil, Hazizan Md
Omar, Mohd Firdaus
Al Bakri Abdullah, Mohd Mustafa
Rahim, Shayfull Zamree Abd
Nabiałek, Marcin
Wysłocki, Jerzy J.
Powiązania:
https://bibliotekanauki.pl/articles/2174561.pdf
Data publikacji:
2022
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
hybrid materials
carbon nanotubes
carbon fiber
Opis:
In this study, the electrospray deposition (ESD) method was used to deposit carbon nanotubes (CNT) onto the surfaces of carbon fibers (CF) in order to produce hybrid carbon fiber-carbon nanotubes (CF-CNT) which is rarely reported in the past. Extreme high-resolution field emission scanning electron microscopy (XHR-FESEM), high-resolution transmission electron microscopy (HRTEM) and x-ray photoelectron spectroscopy (XPS) were used to analyse the hybrid carbon fiber-carbon nanotube (CF-CNT). The results demonstrated that CNT was successfully and homogenously distributed on the CF surface. Hybrid CF-CNT was then prepared and compared with CF without CNT deposition in terms of their tensile properties. Statistically, the tensile strength and the tensile modulus of the hybrid CF-CNT were increased by up to 3% and 25%, respectively, as compared to the CF without CNT deposition. The results indicated that the ESD method did not cause any reduction of tensile properties of hybrid CF-CNT. Based on this finding, it can be prominently identified some new and significant information of interest to researchers and industrialists working on CF based products.
Źródło:
Archives of Metallurgy and Materials; 2022, 67, 4; 1299--1304
1733-3490
Pojawia się w:
Archives of Metallurgy and Materials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Influence of Filler Surface Modification on Static and Dynamic Mechanical Responses of Rice Husk Reinforced Linear Low-Density Polyethylene Composites
Autorzy:
Omar, Mohd Firdaus
Al Bakri Abdullah, Mohd Mustafa
Ting, Sam Sung
Jeż, Bartłomiej
Nabiałek, Marcin
Md Akil, Hazizan
Zulkepli, Nik Noriman
Abd Rahim, Shayfull Zamree
Azmi, Azida
Powiązania:
https://bibliotekanauki.pl/articles/2106572.pdf
Data publikacji:
2022
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
silane coupling agents
strain rate
universal testing machine
split Hopkinson pressure bar
strain rate sensitivity
Opis:
Filler surface modification has become an essential approach to improve the compatibility problem between natural fillers and polymer matrices. However, there is limited work that concerns on this particular effect under dynamic loading conditions. Therefore, in this study, both untreated and treated low linear density polyethylene/rice husk composites were tested under static (0.001 s-1, 0.01 s-1 and 0.1 s-1) and dynamic loading rates (650 s-1, 900 s-1 and 1100 s-1) using universal testing machine and split Hopkinson pressure bar equipment, respectively. Rice husk filler was modified using silane coupling agents at four different concentrations (1, 3, 5 and 7% weight percentage of silane) at room temperature. This surface modification was experimentally proven by Fourier transform infrared and Field emission scanning electron microscopy. Results show that strength properties, stiffness properties and yield behaviour of treated composites were higher than untreated composites. Among the treated composites, the 5% silane weight percentage composite shows the optimum mechanical properties. Besides, the rate of sensitivity of both untreated and treated composites also shows great dependency on strain rate sensitivity with increasing strain rate. On the other hand, the thermal activation volume shows contrary trend. For fracture surface analysis, the results show that the treated LLDPE/RH composites experienced less permanent deformation as compared to untreated LLDPE/RH composites. Besides, at dynamic loading, the fracture surface analysis of the treated composites showed good attachment between RH and LLDPE.
Źródło:
Archives of Metallurgy and Materials; 2022, 67, 2; 507--519
1733-3490
Pojawia się w:
Archives of Metallurgy and Materials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Mechanical and Dielectric Properties of Hybrid Carbon Nanotubes-Woven Glass Fibre Reinforced Epoxy Laminated Composites via the Electrospray Deposition Method
Autorzy:
Zakaria, Muhammad Razlan
Khairuddin, Nur Aishahatul Syafiqa Mohammad
Omar, Mohd Firdaus
Akil, Hazizan Md
Othman, Muhammad Bisyrul Hafi
Al Bakri Abdullah, Mohd Mustafa
Abd Rahim, Shayfull Zamree
Ting, Sam Sung
Azmi, Azida
Powiązania:
https://bibliotekanauki.pl/articles/2106599.pdf
Data publikacji:
2022
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
glass fibre
carbon nanotubes
hybrid material
epoxy laminated composites
Opis:
Herein, the effects of multi-walled carbon nanotubes (CNTs) on the mechanical and dielectric performance of hybrid carbon nanotube-woven glass fiber (GF) reinforced epoxy laminated composited are investigated. CNTs are deposited on woven GF surface using an electrospray deposition method which is rarely reported in the past. The woven GF deposited with CNT and without deposited with CNT are used to produce epoxy laminated composites using a vacuum assisted resin transfer moulding. The tensile, flexural, dielectric constant and dielectric loss properties of the epoxy laminated composites were then characterized. The results confirm that the mechanical and dielectric properties of the woven glass fiber reinforced epoxy laminated composited increases with the addition of CNTs. Field emission scanning electron microscope is used to examine the post damage analysis for all tested specimens. Based on this finding, it can be prominently identified some new and significant information of interest to researchers and industrialists working on GF based products.
Źródło:
Archives of Metallurgy and Materials; 2022, 67, 2; 669--675
1733-3490
Pojawia się w:
Archives of Metallurgy and Materials
Dostawca treści:
Biblioteka Nauki
Artykuł

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies