Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Łabęda-Grudziak, Z.," wg kryterium: Autor


Wyświetlanie 1-7 z 7
Tytuł:
Odporna detekcja uszkodzeń przy zastosowaniu addytywnego modelu regresji
Robust fault detection with application of the additive regression model
Autorzy:
Łabęda-Grudziak, Z.
Powiązania:
https://bibliotekanauki.pl/articles/156901.pdf
Data publikacji:
2011
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
detekcja uszkodzeń
model addytywny
niepewność modelu
modelowanie
fault detection
additive model
data mining
model uncertainty
modelling
Opis:
W artykule przedstawiono wykorzystanie addytywnego modelu regresji oraz statystycznych technik eksploracji danych do konstrukcji układu detekcji uszkodzeń odpornej na zakłócenia i niepewność modelu, a następnie do oceny wrażliwości modelu na występowanie poszczególnych uszkodzeń. Do uzyskania właściwości odporności, niepewność otrzymanego modelu wyznaczana jest poprzez zastosowanie techniki modelowania błędu modelu addytywnego. Przedstawione rozwiązanie zostało przetestowane dla przykładowego zaworu regulacyjnego na podstawie danych laboratoryjnych próbkowanych na stanowisku regulacji poziomu wody w zbiorniku walczakowym
The detection of faults in engineering systems is of great practical significance. The detection performance of the diagnostic technique is characterized by important and quantifiable benchmarks, like the fault sensitivity and the reaction speed. Also its robustness, i.e., the ability of the technique to operate in the presence of noise, disturbances and modelling errors, is affected by the design of a detection algorithm. This paper develops a new approach to the design of robust fault detection systems via an additive model and knowledge discovery data. To achieve robustness, an uncertainty associated with the additive model is also taken into account. The model error modelling is used to deal with noise corrupting the data and unmodelled dynamics. The backfitting algorithm with nonparametric smoothing techniques has been used for estimation of the additive model. The modelling results as well as the fault detection procedures are presented. The proposed approach is tested on an example of a control valve for measurement tracks in the boiler laboratory setup in order to demonstrate the sensitivity of faults.
Źródło:
Pomiary Automatyka Kontrola; 2011, R. 57, nr 7, 7; 774-778
0032-4140
Pojawia się w:
Pomiary Automatyka Kontrola
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Identification of dynamic system additive models by KDD methods
Identyfikacja addytywnych modeli obiektów dynamicznych metodami odkryć wiedzy w bazach danych
Autorzy:
Łabęda-Grudziak, Z.
Powiązania:
https://bibliotekanauki.pl/articles/157329.pdf
Data publikacji:
2011
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
identyfikacja
model addytywny
bazy danych
odkrywanie wiedzy z danych
obiekty dynamiczne
identification
additive model
databases
knowledge discovery data
dynamic systems
Opis:
The goal of this paper is to present a new way of knowledge discovery data (KDD) application to construct a statistical model that describes dynamic systems. This includes presentation of data mining as an iterative and adaptive process, from communication of the research problem through data collection, data preprocessing, model building, model evaluation, and finally, model deployment. The types of models discussed in this paper are in form of additive models and can be used for prediction of process outputs, for calibration, or for diagnostics purposes. The backfitting algorithm with nonparametric smoothing techniques was used for estimation of the additive model. The example of application of the methods, conclusions and remarks are presented as well. The research was carried out based on archival process data recorded in the Lublin Sugar Factory S.A.
Celem niniejszej pracy jest zaprezentowanie nowego podejścia do identyfikacji modeli obiektów dynamicznych metodami odkryć wiedzy w bazach danych. W szczególności przedstawiono eksplorację danych jako proces iteracyjny i adaptacyjny, od zrozumienia uwarunkowań badawczych, przez zebranie danych, przygotowanie danych, modelowanie, ewaluację modelu do jego wdrożenia. W badaniach wykorzystano addytywny model regresji, który może posłużyć do przewidywania wartości wyjściowych procesu, kalibracji, a także w celach diagnostycznych. Do wyznaczenia parametrów modeli addytywnych zastosowano algorytm dopasowania wstecznego i nieparametryczne techniki estymacji. Badania przeprowadzono na podstawie archiwalnych danych pomiarowych zarejestrowanych w Cukrowni LUBLIN S.A.
Źródło:
Pomiary Automatyka Kontrola; 2011, R. 57, nr 3, 3; 249-252
0032-4140
Pojawia się w:
Pomiary Automatyka Kontrola
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Smoothing parameters selection in the additive regression models approach for the fault detection
Dobór parametrów wygładzających w modelach addytywnych dla potrzeb detekcji uszkodzeń
Autorzy:
Łabęda-Grudziak, Z.,
Powiązania:
https://bibliotekanauki.pl/articles/151229.pdf
Data publikacji:
2011
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
detekcja uszkodzeń
model addytywny
parametr wygładzający
identyfikacja
obiekty dynamiczne
fault detection
additive model
smoothing parameter
identification
dynamic system
Opis:
Smoothing is an important statistical tool and is strongly related to nonparametric prediction. Smoothers can be used to visual description of data, smooth plots of relationship, and diagnose residual plots. This paper presents a nonlinear dynamic systems identification method based on additive regression models with smoothing techniques and knowledge discovery data. In particular, two alternative theoretical smoothing choices are proposed in an attempt to estimate additive models structure. The fault detection of dynamic system based on the obtained model is planned aim of the work.. The final part of this work contains an illustrative example regarding the application of proposed approach to a control valve for measurement tracks in the boiler laboratory setup. All research has been carried out in order to demonstrate the sensitivity of faults for three theoretical smoothing parameters in the analyzed structure.
Funkcja wygładzająca jest ważnym narzędziem statystycznym związanym z regresją nieparametryczną i służy do określania zależności pomiędzy zmiennymi wejściowymi a wyjściowymi. W pracy przedstawiono nowe podejście do identyfikacji nieliniowych systemów dynamicznych, oparte na addytywnym modelu regresji wraz technikami wygładzającymi oraz eksploracji danych. W szczególności, aby osiągnąć większą elastyczność przy szacowaniu modelu addytywnego, dokonano wyboru dwóch alternatywnych metod wygładzających. Pozyskana wiedza posłużyła do konstrukcji algorytmów detekcji uszkodzeń, a następnie do oceny wrażliwości na występowanie poszczególnych uszkodzeń w zależności od trzech parametrów wygładzających. Badania przeprowadzono dla przykładowego zaworu regulacyjnego na podstawie danych laboratoryjnych próbkowanych na stanowisku regulacji poziomu wody w zbiorniku walczakowym.
Źródło:
Pomiary Automatyka Kontrola; 2011, R. 57, nr 2, 2; 197-200
0032-4140
Pojawia się w:
Pomiary Automatyka Kontrola
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Identyfikacja i symulacja rozkładu ciśnienia w sieciach gazowych z wykorzystaniem addytywnego modelu regresji
The identification and simulation of pressure decomposition in gas network using additive regression model
Autorzy:
Łabęda-Grudziak, Z. M.
Powiązania:
https://bibliotekanauki.pl/articles/277654.pdf
Data publikacji:
2010
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Automatyki i Pomiarów
Tematy:
model addytywny
sieci przesyłowe gazu
symulacja
przewidywanie ciśnienia
eksploracja danych
additive model
gas pipelines
simulation
pressure prediction
data mining
Opis:
W artykule przedstawiono identyfikację i symulację pracy sieci przesyłowej gazu za pomocą modeli addytywnych w celu oszacowania wartości ciśnienia w określonych punktach węzłowych oraz zbadania zachowania się sieci. Modele cząstkowe odzwierciedlające funkcjonowanie określonych fragmentów instalacji zostały pozyskiwane z zastosowania technik eksploracji danych pomiarowych. Do wyznaczenia parametrów modeli addytywnych zastosowano algorytm dopasowania wstecznego i nieparametryczne techniki estymacji. Badania przeprowadzono dla wybranego fragmentu rzeczywistej sieci przesyłowej gazu.
In this paper identification and simulation methods to predict pressure values at determinated nodes and to analyse the operation of gas network is presented. The proposed method is based on additive models and knowledge discovery data application. The backfitting algorithm with nonparametric smoothness techniques has been used for estimating the additive model. The results of modeling has been presented. All research has been carried out based on the part of long range gas pipelines. Received results are satisfactory because the proposed method is very suitable for the multivariate dynamical process fitting in the analyzed structures.
Źródło:
Pomiary Automatyka Robotyka; 2010, 14, 11; 60-64
1427-9126
Pojawia się w:
Pomiary Automatyka Robotyka
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Diagnostic technique based on additive models in the tasks of the ongoing exploitation of gas network
Technika diagnostyki oparta na addytywnych modelach regresyjnych w zadaniach bieżącej eksploatacji sieci gazowej
Autorzy:
Łabęda-Grudziak, Z. M.
Powiązania:
https://bibliotekanauki.pl/articles/1365816.pdf
Data publikacji:
2016
Wydawca:
Polska Akademia Nauk. Polskie Naukowo-Techniczne Towarzystwo Eksploatacyjne PAN
Tematy:
fault detection
additive model
identification
exploitation
gas transmission networks
detekcja uszkodzeń
addytywny model regresji
identyfikacja
eksploatacja
sieci przesyłowe gazu
Opis:
The article presents a method of estimating the pressure value at given nodes of natural gas transmission network for the purposes of predicting changes of the process state during its exploitation. For this purpose additive regression model was applied together with non-parametric estimation techniques, which was used for monitoring the operation of gas networks, as well as designing the system of fault detection, and then – the assessment of sensitivity for particular faults. Research was conducted on the basis of data from the analytical model of network simulator, which is adjusted to the actual gas transmission network.
W artykule przedstawiono metodę oszacowania wartości ciśnienia w określonych punktach węzłowych sieci przesyłowej gazu ziemnego dla potrzeb przewidywania zmiany stanu procesu w trakcie jego eksploatacji. W tym celu wykorzystano addytywny model regresji wraz z nieparametrycznymi technikami estymacji, który posłużył zarówno do monitorowania pracy sieci gazowej, jak i do konstrukcji układu detekcji uszkodzeń, a następnie do oceny wrażliwości na występowanie poszczególnych uszkodzeń. Badania przeprowadzono na podstawie danych z modelu analitycznego symulatora sieci, który dostrojony jest do rzeczywistej sieci przesyłowej gazu.
Źródło:
Eksploatacja i Niezawodność; 2016, 18, 1; 50-56
1507-2711
Pojawia się w:
Eksploatacja i Niezawodność
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Double fault distinguishability in linear systems
Autorzy:
Kościelny, J. M.
Łabęda-Grudziak, Z. M.
Powiązania:
https://bibliotekanauki.pl/articles/331134.pdf
Data publikacji:
2013
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
fault isolation
double fault
fault distinguishability
structured residuals
directional residuals
secondary residuals
linear system
lokalizacja uszkodzeń
rozróżnialność uszkodzeń
układ liniowy
Opis:
This paper develops a new approach to double fault isolation in linear systems with the aid of directional residuals. The method of residual generation for computational as well as internal forms is applied. Isolation of double faults is based on the investigation of the coplanarity of the residual vector with the planes defined by the individual pairs of directional fault vectors. Additionally, the method of designing secondary residuals, which are structured and directional, is proposed. These transformations allow achieving various isolation properties. It is shown that double fault distinguishability can be improved by decomposing the observed residual vector along the response directions. The described methods are illustrated with a simple computational example.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2013, 23, 2; 395-406
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Porównanie cząstkowych modeli parametrycznych w zadaniu detekcji uszkodzeń sieci gazowej
Comparison of particular parametric models for faults detection in gas pipeline
Autorzy:
Syfert, M.
Jankowska, A.
Łabęda-Grudziak, Z.
Tabor, Ł.
Powiązania:
https://bibliotekanauki.pl/articles/155924.pdf
Data publikacji:
2012
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
detekcja uszkodzeń
modele cząstkowe
modele parametryczne
addytywne modele regresyjne
sztuczne sieci neuronowe
systemy rozmyte
faults detection
particular models
parametric models
additive regression models
artificial neural networks
fuzzy systems
Opis:
Zreferowano badania detekcji uszkodzeń gazociągu z użyciem cząstkowych modeli parametrycznych. Stosując trzy metody modelowania: addytywne modele regresyjne (najnowszą z badanych technik), sztuczne sieci neuronowe oraz układy rozmyte typu TSK opracowano aproksymacje ciśnień w węzłach sieci. Modele testowano w zadaniu detekcji wycieku oraz uszkodzenia czujnika pomiarowego. Wszystkie modele zapewniały dużą dokładność aproksymacji ciśnienia w poprawnych stanach pracy, wykazując także bardzo skuteczną detekcję uszkodzeń czujników pomiarowych ciśnień, natomiast w sytuacji symulowanych wycieków ich przydatność w detekcji była znacznie mniejsza.
The results of faults detection [1, 2, 3, 4, 5] in a gas system network (Fig. 1) with use of parametric partial models [6, 7, 8] are presented in the paper. This is a new approach to the task with use of exploratory data analysis [10, 11, 17] and partial models. Three techniques were used to build models of pressure in network nodes: additive regression (ADD - new method of modelling [10, 11, 12, 13, 14, 15]), artificial neural networks (ANN) [16, 17, 18] and TSK fuzzy logic modelling [8, 16, 17]. The measured pressures in adjacent nodes as well cumulative flows in the main line (from global analytical model [9]) of gasoline were the inputs of the models. For the analysed stations (in parts A and B marked in Fig. 1) a set of test failures in the form of leaks and damage of pressure sensors is given in Tab. 1.Using trial and error method, by evaluating the effectiveness of fault detection, there were obtained structures of models of different complexity for individual modelling techniques: ADD - presented by equations (1) and (2), ANN- (3) and (4), TSK- (5) and (6). The model order is not greater than 2. The exemplary results of leak detection with use of particular models are shown in Figs. 3, 5, 7 and of sensor fault detection in Figs. 4, 6, 8. In the conclusions there is summarised the relative accuracy of models (in Table 2), the relative normalized values of the studied residues of leaks - Tab.3 and the pressure sensor failures - Tab. 4. All models provided highly precise pressure approximation in non-fault states, but TSK and ADD models turned out to be the more accurate. Additionally, all of them were effective in case of pressure sensor fault detection, however, in case of simulated leakages their usefulness was much lower.
Źródło:
Pomiary Automatyka Kontrola; 2012, R. 58, nr 1, 1; 3-8
0032-4140
Pojawia się w:
Pomiary Automatyka Kontrola
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-7 z 7

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies