Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Identification of dynamic system additive models by KDD methods

Tytuł:
Identification of dynamic system additive models by KDD methods
Identyfikacja addytywnych modeli obiektów dynamicznych metodami odkryć wiedzy w bazach danych
Autorzy:
Łabęda-Grudziak, Z.
Powiązania:
https://bibliotekanauki.pl/articles/157329.pdf
Data publikacji:
2011
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
identyfikacja
model addytywny
bazy danych
odkrywanie wiedzy z danych
obiekty dynamiczne
identification
additive model
databases
knowledge discovery data
dynamic systems
Źródło:
Pomiary Automatyka Kontrola; 2011, R. 57, nr 3, 3; 249-252
0032-4140
Język:
angielski
Prawa:
CC BY: Creative Commons Uznanie autorstwa 3.0 Unported
Dostawca treści:
Biblioteka Nauki
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
The goal of this paper is to present a new way of knowledge discovery data (KDD) application to construct a statistical model that describes dynamic systems. This includes presentation of data mining as an iterative and adaptive process, from communication of the research problem through data collection, data preprocessing, model building, model evaluation, and finally, model deployment. The types of models discussed in this paper are in form of additive models and can be used for prediction of process outputs, for calibration, or for diagnostics purposes. The backfitting algorithm with nonparametric smoothing techniques was used for estimation of the additive model. The example of application of the methods, conclusions and remarks are presented as well. The research was carried out based on archival process data recorded in the Lublin Sugar Factory S.A.

Celem niniejszej pracy jest zaprezentowanie nowego podejścia do identyfikacji modeli obiektów dynamicznych metodami odkryć wiedzy w bazach danych. W szczególności przedstawiono eksplorację danych jako proces iteracyjny i adaptacyjny, od zrozumienia uwarunkowań badawczych, przez zebranie danych, przygotowanie danych, modelowanie, ewaluację modelu do jego wdrożenia. W badaniach wykorzystano addytywny model regresji, który może posłużyć do przewidywania wartości wyjściowych procesu, kalibracji, a także w celach diagnostycznych. Do wyznaczenia parametrów modeli addytywnych zastosowano algorytm dopasowania wstecznego i nieparametryczne techniki estymacji. Badania przeprowadzono na podstawie archiwalnych danych pomiarowych zarejestrowanych w Cukrowni LUBLIN S.A.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies