Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "vector optimization" wg kryterium: Wszystkie pola


Tytuł:
Analiza wyników symulacji ewolucyjnej optymalizacji parametrycznej różnych układów sterowania polowo-zorientowanego z silnikiem indukcyjnym
Analysis of evolutionary simulation of parametric optimization of different field-oriented control systems with induction motors
Autorzy:
Hudy, W.
Jaracz, K.
Powiązania:
https://bibliotekanauki.pl/articles/187537.pdf
Data publikacji:
2011
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Technik Innowacyjnych EMAG
Tematy:
silniki indukcyjne
maszyny elektryczne
układy sterowania wektorowego
induction motors
AC machines
vector control system
Opis:
W chwili obecnej silniki indukcyjne (w tym pierścieniowe) są powszechnie stosowanymi maszynami prądu przemiennego. Na popularność wykorzystania tego typu maszyn elektrycznych wpływa niski koszt budowy oraz szybki rozwój układów sterowania wektorowego. W niniejszym artykule porównano układy sterowania DFOC, których wartości nastaw regulatorów zostały obliczone przez algorytm ewolucyjny. Funkcją uczącą była skokowa zmiana wartości prędkości obrotowej oraz skokowo zadana zmiana momentu obciążenia podczas pracy silnika. Układ sterowania zweryfikowano przy pomocy pakietu MATLAB/Simulink.
Induction motors (including slip-ring motors) are commonly used AC machines nowadays. Their popularity is due to low costs of construction and quick development of vector control systems. The article compares DFOC control systems whose setting values of regulators were calculated by means of the evolutionary algorithm. The learning function was a step change of rotational speed and a stepwise-set change of load torque during the motor operations. The control system was verified with the use of the MATLAB/Simulink kit.
Źródło:
Mechanizacja i Automatyzacja Górnictwa; 2011, R. 49, nr 12, 12; 20-26
0208-7448
Pojawia się w:
Mechanizacja i Automatyzacja Górnictwa
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Application of SVR with improved ant colony optimization algorithms in exchange rate forecasting
Autorzy:
Hung, W. M.
Hong, W. C.
Powiązania:
https://bibliotekanauki.pl/articles/969706.pdf
Data publikacji:
2009
Wydawca:
Polska Akademia Nauk. Instytut Badań Systemowych PAN
Tematy:
support vector regression (SVR)
continuous ant colony optimization algorithms (CACO)
exchange rates
financial forecasting
Opis:
Traditional time series forecasting models, like ARIMA and regression models, can hardly capture nonlinear patterns. Support vector regression (SVR), a novel neural network technique, has been successfully used to solve nonlinear regression and time series problems. The SVR model applies the structural risk minimization principle to minimize the upper bound of the generalization error, instead of minimizing the training error, employed by most conventional neural network models. Thus, parameter determination for an SVR model is appropriate for achieving high forecasting accuracy. Several evolutionary algorithms, such as genetic algorithms and simulated annealing algorithms have been used in parameter selection, but these algorithms often suffer from the possibility of being trapped in local optimum. This study used an improved ant colony optimization algorithm in an SVR model, called SVRCACO, for selecting suitable parameters, with encouraging local search in areas where forecasting accuracy improvement continues to be made, then, autocatalytically converge to promising regions. Numerical examples of exchange rate forecasting from the existing literature are employed to assess the performance of the proposed model. Experimental results show that the proposed model outperforms other approaches from the literature.
Źródło:
Control and Cybernetics; 2009, 38, 3; 863-891
0324-8569
Pojawia się w:
Control and Cybernetics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Applications of the combinatorial configurations for optimization of technological systems
Autorzy:
Riznyk, V.
Powiązania:
https://bibliotekanauki.pl/articles/411283.pdf
Data publikacji:
2016
Wydawca:
Polska Akademia Nauk. Oddział w Lublinie PAN
Tematy:
Ideal Ring Bundle
circular sequence
circular symmetry
model
optimal proportion
vector data coding
self-correcting
resolving ability
Opis:
This paper involves techniques for improving the quality indices of engineering devices or systems with non-uniform structure (e.g. arrays of sonar antenna arrays) with respect to performance reliability, transmission speed, resolving ability, and error protection, using novel designs based on combinatorial configurations such as classic cyclic difference sets and novel vector combinatorial configurations. These design techniques makes it possible to configure systems with fewer elements than at present, while maintaining or improving on the other operating characteristics of the system. Several factors are responsible for distinguish of the objects depending an implicit function of symmetry and non-symmetry interaction subject to the real space dimensionality. Considering the significance of circular symmetric field, while an asymmetric subfields of the field, further a better understanding of the role of geometric structure in the behaviour of system objects is developed. This study, therefore, aims to use the appropriate algebraic results and techniques for improving such quality indices as combinatorial varieties, precision, and resolving ability, using remarkable properties of circular symmetry and non-symmetry mutual penetration as an interconnection cyclic relationships, and interconvertible dimensionality models of optimal distributed systems. Paper contains some examples for the optimization relating to the optimal placement of structural elements in spatially or temporally distributed technological systems, to which these techniques can be applied, including applications to coded design of signals for communications and radar, positioning of elements in an antenna array, and development vector data coding design.
Źródło:
ECONTECHMOD : An International Quarterly Journal on Economics of Technology and Modelling Processes; 2016, 5, 2; 27-32
2084-5715
Pojawia się w:
ECONTECHMOD : An International Quarterly Journal on Economics of Technology and Modelling Processes
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Applying Hunger Game Search (HGS) for selecting significant blood indicators for early prediction of ICU COVID-19 severity
Autorzy:
Sayed, Safynaz AbdEl-Fattah
ElKorany, Abeer
Sayed, Sabah
Powiązania:
https://bibliotekanauki.pl/articles/27312915.pdf
Data publikacji:
2023
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
ICU severity prediction
COVID-19
clinical blood tests
Hunger Game search
HGS
optimization algorithm
support vector machine
SVM
feature selection
Opis:
This paper introduces an early prognostic model for attempting to predict the severity of patients for ICU admission and detect the most significant features that affect the prediction process using clinical blood data. The proposed model predicts ICU admission for high-severity patients during the first two hours of hospital admission, which would help assist clinicians in decision-making and enable the efficient use of hospital resources. The Hunger Game search (HGS) meta-heuristic algorithm and a support vector machine (SVM) have been integrated to build the proposed prediction model. Furthermore, these have been used for selecting the most informative features from blood test data. Experiments have shown that using HGS for selecting features with the SVM classifier achieved excellent results as compared with four other meta-heuristic algorithms. The model that used the features that were selected by the HGS algorithm accomplished the topmost results (98.6 and 96.5%) for the best and mean accuracy, respectively, as compared to using all of the features that were selected by other popular optimization algorithms.
Źródło:
Computer Science; 2023, 24 (1); 113--136
1508-2806
2300-7036
Pojawia się w:
Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
C^11 vector optimization problems and Riemann derivatives
Autorzy:
Ginchev, I.
Guerraggio, A.
Rocca, M.
Powiązania:
https://bibliotekanauki.pl/articles/970359.pdf
Data publikacji:
2004
Wydawca:
Polska Akademia Nauk. Instytut Badań Systemowych PAN
Tematy:
optymalizacja wektorowa
pochodna kierunkowa typu Riemanna
warunek optymalności dwuwskaźnikowy
vector optimization
Riemann-type directional derivatives
second-order optimality conditions
Opis:
In this paper we introduce a generalized second-order Riemann-type derivative for C^1'1 vector functions and use it to establish necessary and sufficient optimality conditions for vector optimization problems. We show that, these conditions are stronger than those obtained by means of the second-order subdinerential in Clarke sense considered in Guerraggio, Luc (2001) and also to some extent than those obtained in Guerraggio, Luc, Minh (2001).
Źródło:
Control and Cybernetics; 2004, 33, 2; 259-273
0324-8569
Pojawia się w:
Control and Cybernetics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Changes of the set of efficient solutions by extending the number of objectives and its evaluation
Zmiany zbioru rozwiązań sprawnych przy zwiększeniu liczby celów i ich ocena
Autorzy:
Malinowska, A.
Powiązania:
https://bibliotekanauki.pl/articles/206753.pdf
Data publikacji:
2002
Wydawca:
Polska Akademia Nauk. Instytut Badań Systemowych PAN
Tematy:
nieistotna funkcja celu
rozwiązania sprawne
zadanie optymalizacji wektorowej
efficient solutions
nonessential objective function
vector optimization problem
Opis:
In this paper the vector optimization problem P with continuous and convex objective functions on a compact convex feasible set is considered. We form a new vector optimisation problem P* from P by adding an objective function to the problem P. The necessary and sufficient conditions for the sets of efficient solutions of these two problems to be equal are given. In the case where the set of efficient solutions of the problem P* contains that of P, we also suggest how the difference between the sets of efficient solutions of the problems P* and P might be evaluated. Examples are given to illustrate our results.
W artykule rozważa się zadanie optymalizacji wektorowej P z ciągłymi i wypukłymi funkcjami celu na zwartym wypukłym zbiorze rozwiazań dopuszczalnych. Tworzymy nowe zadanie optymalizacji wektorowej P* poprzez dodanie funkcji celu do zadania P. Podano warunki konieczne i wystarczające do tego, by zbiory rozwiązań sprawnych obu zadań były równe. Dla przypadku, gdy zbiór rozwiązan sprawnych zadania P* zawiera odpowiedni zbiór dla P, zaproponowano także sposób oceny różnicy między tymi zbiorami rozwiązań sprawnych. Wyniki podane w artykule zostały zilustrowane przykładami.
Źródło:
Control and Cybernetics; 2002, 31, 4; 965-974
0324-8569
Pojawia się w:
Control and Cybernetics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Contingent epiderivative and its applications to set-valued optimization
Autorzy:
Bednarczuk, E.
Song, W.
Powiązania:
https://bibliotekanauki.pl/articles/206559.pdf
Data publikacji:
1998
Wydawca:
Polska Akademia Nauk. Instytut Badań Systemowych PAN
Tematy:
optymalizacja wektorowa
contingent epiderivative
optimality conditions
sensitivity analysis
vector optimization
Opis:
In the present paper we give an alternative definition of contingent epiderivative for a set-valued map. We use our concept of contingent epiderivative to formulate necessary and/ or sufficient optimality conditions for a set-valued optimization problem and to study sensivity of a family of parametrized vector optimization problems.
Źródło:
Control and Cybernetics; 1998, 27, 3; 375-386
0324-8569
Pojawia się w:
Control and Cybernetics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Dynamic analysis of a mechatronic drive system with an induction motor
Autorzy:
Cao, Yongdi
Liu, Xiaohong
Powiązania:
https://bibliotekanauki.pl/articles/2200885.pdf
Data publikacji:
2023
Wydawca:
Polskie Towarzystwo Mechaniki Teoretycznej i Stosowanej
Tematy:
dynamic model
electromechanical system
vector control
optimization
rotor
Opis:
The paper presents research findings in the modelling and optimization of dynamic parameters of mechatronic systems with an induction motor. A mathematical model was developed to analyze currents in dynamic states of squirrel-cage rotors in the case of a line-to-line fault. The findings were verified experimentally using calculations for a 1.5 kW three-phase induction motor. The equations for a stationary 0x, 0y coordinate system relating to the stator were derived. The set of design variables selected in the optimization process contained parameters describing design features of the gear shafts and control units settings.
Źródło:
Journal of Theoretical and Applied Mechanics; 2023, 61, 2; 245--258
1429-2955
Pojawia się w:
Journal of Theoretical and Applied Mechanics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Electronic System Fault Diagnosis with Optimized Multi-kernel SVM by Improved CPSO
Diagnoza uszkodzeń układu elektronicznego z wykorzystaniem Wielojądrowej Maszyny Wektorów Nośnych (SVM) zoptymalizowanej przy pomocy poprawionego algorytmu CPSO
Autorzy:
Guo, Y. M.
Wang, X. T.
Liu, C.
Zheng, Y. F.
Cai, X. B.
Powiązania:
https://bibliotekanauki.pl/articles/300922.pdf
Data publikacji:
2014
Wydawca:
Polska Akademia Nauk. Polskie Naukowo-Techniczne Towarzystwo Eksploatacyjne PAN
Tematy:
układ elektroniczny
diagnoza uszkodzeń
maszyna wektorów nośnych
optymalizacja metodą chaosu-roju cząstek
funkcja wielojądrowa
electronic system
fault diagnosis
support vector machine (SVM)
chaos particles swarm optimization
multi-kernel
Opis:
Bezpieczeństwo pracy układów elektronicznych stało się kluczowym zagadnieniem w odniesieniu do złożonych układów o wysokiej niezawodności. Obecnie coraz większy nacisk kładzie się na trafność diagnozy uszkodzeń układów elektronicznych. Na podstawie charakterystyki diagnozy uszkodzeń układów elektronicznych, opracowaliśmy model wielokryterialnej klasyfikacji SVM pozwalający osiągnąć lepszą trafność diagnozy uszkodzeń. Model wykorzystuje funkcję wielojądrową składającą się z kilku bazowych funkcji jądrowych pozwalającą na zwiększenie interpretowalności modelu klasyfikacyjnego. Aby zoptymalizować działanie modelu wielokryterialnej klasyfikacji SVM wykorzystującego funkcję wielojądrową, udoskonaliliśmy algorytm Optymalizacji Metodą Chaosu-Roju Cząstek (CPSO), co pozwoliło osiągnąć optymalne parametry SVM i funkcji wielojądrowej. W poprawionym algorytmie CPSO wzmocniono różnorodność wyszukiwania poprzez wykorzystanie chaotycznej sekwencji generowanej przez zmodyfikowaną mapę tent, a także włączono do standardowego algorytmu PSO efektywną metodę pozwalającą uniknąć przedwczesnej stagnacji oraz uzyskać globalne wartości optymalizacji. Wyniki symulacji diagnozy uszkodzeń systemu elektronicznego pokazują, że proponowany system optymalizacji może być wykorzystywany jako skuteczna metoda umożliwiająca znaczne zwiększenie trafności diagnozy uszkodzeń z wykorzystaniem wielojądrowej SVM.
Electronic systems’ safety operation has become a key issue to complex and high reliability systems. Now more emphasis has been laid on the accuracy of electronic system fault diagnosis. Based on the characteristics of the electronic system fault diagnosis, we design a multi-classification SVMs model to attain better fault diagnosis accuracy, which utilizes multi-kernel function consisting of several basis kernel functions to enhance the interpretability of the classification model. In order to optimize the performance of multi-classification SVMs with multi-kernel, we improve the Chaos Particles swarm Optimization (CPSO) algorithm to achieve the optimum parameters of SVMs and the multi-kernel function. For the improved CPSO algorithm, a modified Tent Map chaotic sequence is used to strengthen the search diversity, and an effective method is embedded to the stander PSO algorithm which can ensure to avoid premature stagnation and obtain the global optimization values. The fault diagnosis simulation results of an electronic system show the proposed optimization scheme is a feasible and effective method and it can significantly improve the fault diagnosis accuracy of the multi-kernel SVM.
Źródło:
Eksploatacja i Niezawodność; 2014, 16, 1; 85-91
1507-2711
Pojawia się w:
Eksploatacja i Niezawodność
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Evolutionary data driven modelling and many objective optimization of non linear noisy data in the blast furnace iron making process
Autorzy:
Mahanta, Bashista Kumar
Chakraborti, Nirupam
Powiązania:
https://bibliotekanauki.pl/articles/29520226.pdf
Data publikacji:
2021
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
deep learning
reference vector
neural net
genetic programming
blast furnace
Opis:
Optimization of process parameters in modern blast furnace operation, where both control and accessing large data set with multiple variables and objectives is a challenging task. To handle such non-linear and noisy data set deep learning techniques have been used in recent time. In this study an evolutionary deep neural network algorithm (EvoDN2) has been applied to derive a data driven model for blast furnace. The optimal front generated from deep neural network is compared against the optimal models developed from bi-objective genetic programming algorithm (BioGP) and evolutionary neural network (EvoNN). The optimization process is applied to all the training models by using constraint based reference vector evolutionary algorithm (cRVEA).
Źródło:
Computer Methods in Materials Science; 2021, 21, 3; 163-175
2720-4081
2720-3948
Pojawia się w:
Computer Methods in Materials Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Hoelder-like properties of minimal points in vector optimization
Autorzy:
Bednarczuk, E.
Powiązania:
https://bibliotekanauki.pl/articles/205500.pdf
Data publikacji:
2002
Wydawca:
Polska Akademia Nauk. Instytut Badań Systemowych PAN
Tematy:
ciągłość Hoeldera
optymalizacja wektorowa
stabilność
Hoelder-like continuity
stability
vector optimization
Opis:
We derive conditions for Hoelder calmness of minimal points of a given set, as a function of a parameter appearing in the description of the set. Different criteria are proved depending on whwther the ordering cone has a nonempty interior or not.
Źródło:
Control and Cybernetics; 2002, 31, 3; 423-438
0324-8569
Pojawia się w:
Control and Cybernetics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Joint Optimization of Sum and Difference Patterns with a Common Weight Vector Using the Genetic Algorithm
Autorzy:
Mohammed, Jafar Ramadhan
Aljaf, Duaa Alyas
Powiązania:
https://bibliotekanauki.pl/articles/2142319.pdf
Data publikacji:
2022
Wydawca:
Instytut Łączności - Państwowy Instytut Badawczy
Tematy:
common weight vector
difference pattern
genetic algorithm
monopulse radar antenna
sum pattern
Opis:
A monopulse searching and tracking radar antenna array with a large number of radiating elements requires a simple and efficient design of the feeding network. In this paper, an effective and versatile method for jointly optimizing the sum and difference patterns using the genetic algorithm is proposed. Moreover, the array feeding network is simplified by attaching a single common weight to each of its elements. The optimal sum pattern with the desired constraints is first generated by independently optimizing amplitude weights of the array elements. The suboptimal difference pattern is then obtained by introducing a phase displacement π to half of the array elements under the condition of sharing some sided elements weights of the sum mode. The sharing percentage is controlled by the designer, such that the best performance can be met. The remaining uncommon weights of the difference mode represent the number of degrees of freedom which create a compromise difference pattern. Simulation results demonstrate the effectiveness of the proposed method in generating the optimal sum and suboptimal difference patterns characterized by independently, partially, and even fully common weight vectors.
Źródło:
Journal of Telecommunications and Information Technology; 2022, 3; 67--73
1509-4553
1899-8852
Pojawia się w:
Journal of Telecommunications and Information Technology
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Lung cancer detection using an integration of fuzzy K-Means clustering and deep learning techniques for CT lung images
Autorzy:
Prasad, J. Maruthi Nagendra
Chakravarty, S.
Krishna, M. Vamsi
Powiązania:
https://bibliotekanauki.pl/articles/2173683.pdf
Data publikacji:
2022
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
fuzzy K-means
artificial neural networks
SVM
support vector machine
crow search optimization algorithm
algorytm rozmytych k-średnich
sztuczne sieci neuronowe
maszyna wektorów wspierających
algorytm optymalizacji wyszukiwania kruków
Opis:
Computer aided detection systems are used for the provision of second opinion during lung cancer diagnosis. For early-stage detection and treatment false positive reduction stage also plays a vital role. The main motive of this research is to propose a method for lung cancer segmentation. In recent years, lung cancer detection and segmentation of tumors is considered one of the most important steps in the surgical planning and medication preparations. It is very difficult for the researchers to detect the tumor area from the CT (computed tomography) images. The proposed system segments lungs and classify the images into normal and abnormal and consists of two phases, The first phase will be made up of various stages like pre-processing, feature extraction, feature selection, classification and finally, segmentation of the tumor. Input CT image is sent through the pre-processing phase where noise removal will be taken care of and then texture features are extracted from the pre-processed image, and in the next stage features will be selected by making use of crow search optimization algorithm, later artificial neural network is used for the classification of the normal lung images from abnormal images. Finally, abnormal images will be processed through the fuzzy K-means algorithm for segmenting the tumors separately. In the second phase, SVM classifier is used for the reduction of false positives. The proposed system delivers accuracy of 96%, 100% specificity and sensitivity of 99% and it reduces false positives. Experimental results shows that the system outperforms many other systems in the literature in terms of sensitivity, specificity, and accuracy. There is a great tradeoff between effectiveness and efficiency and the proposed system also saves computation time. The work shows that the proposed system which is formed by the integration of fuzzy K-means clustering and deep learning technique is simple yet powerful and was effective in reducing false positives and segments tumors and perform classification and delivers better performance when compared to other strategies in the literature, and this system is giving accurate decision when compared to human doctor’s decision.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2022, 70, 3; art. no. e139006
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Modeling and optimization of activated carbon carbonization process based on support vector machine
Autorzy:
Liu, Gangyang
Zhang, Chunlong
Dou, Dongyang
Wei, Yinghua
Powiązania:
https://bibliotekanauki.pl/articles/1448262.pdf
Data publikacji:
2021
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
carbonization process
optimization
modeling
support vector machine
Opis:
Product prediction and process parameter optimization in the production process of activated carbon are very important for production. It can stabilize product quality and improve the economic efficiency of enterprises. In this paper, three process parameters of a carbonization furnace, namely feeding rate, rotation speed, and carbonization temperature, were adopted to build a quality optimization model for carbonized materials. First, an orthogonal test was designed to obtain the preliminary relationship between the process parameters and the quality indicators of a carbonized material and prepare data for modeling. Then, an improved SVR model was developed to establish the relationship between product quality indicators and process parameters. Finally, through the singlefactor experiments and the Monte Carlo method, the process parameters affecting the quality of a carbonized material were determined and optimized. This showed that a high-quality carbonized material could be obtained with a smaller feeding rate, larger rotation speed, and higher carbonization furnace temperature. The quality of activated carbon reached its maximum when the feeding rate was 1.0 t/h, the rotation speed was 90 r/h, and the temperature was 836°C. It can effectively improve the quality of carbonized materials.
Źródło:
Physicochemical Problems of Mineral Processing; 2021, 57, 2; 131-143
1643-1049
2084-4735
Pojawia się w:
Physicochemical Problems of Mineral Processing
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Modelling Microcystis Cell Density in a Mediterranean Shallow Lake of Northeast Algeria (Oubeira Lake), Using Evolutionary and Classic Programming
Autorzy:
Arif, Salah
Djellal, Adel
Djebbari, Nawel
Belhaoues, Saber
Touati, Hassen
Guellati, Fatma Zohra
Bensouilah, Mourad
Powiązania:
https://bibliotekanauki.pl/articles/2174666.pdf
Data publikacji:
2023
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
microcystis cell density
Multiple Linear Regression
Support Vector Machine
Particle Swarm Optimization
Genetic Algorithm
Bird Swarm Algorithm
Opis:
Caused by excess levels of nutrients and increased temperatures, freshwater cyanobacterial blooms have become a serious global issue. However, with the development of artificial intelligence and extreme learning machine methods, the forecasting of cyanobacteria blooms has become more feasible. We explored the use of multiple techniques, including both statistical [Multiple Regression Model (MLR) and Support Vector Machine (SVM)] and evolutionary [Particle Swarm Optimization (PSO), Genetic Algorithm (GA), and Bird Swarm Algorithm (BSA)], to approximate models for the prediction of Microcystis density. The data set was collected from Oubeira Lake, a natural shallow Mediterranean lake in the northeast of Algeria. From the correlation analysis of ten water variables monitored, six potential factors including temperature, ammonium, nitrate, and ortho-phosphate were selected. The performance indices showed; MLR and PSO provided the best results. PSO gave the best fitness but all techniques performed well. BSA had better fitness but was very slow across generations. PSO was faster than the other techniques and at generation 20 it passed BSA. GA passed BSA a little further, at generation 50. The major contributions of our work not only focus on the modelling process itself, but also take into consideration the main factors affecting Microcystis blooms, by incorporating them in all applied models.
Źródło:
Geomatics and Environmental Engineering; 2023, 17, 2; 31--68
1898-1135
Pojawia się w:
Geomatics and Environmental Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies