Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "swarm" wg kryterium: Wszystkie pola


Tytuł:
Improvements to Glowworm Swarm Optimization algorithm
Ulepszenia algorytmu Glowworm Swarm Optimization
Autorzy:
Oramus, P.
Powiązania:
https://bibliotekanauki.pl/articles/305567.pdf
Data publikacji:
2010
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
inteligencja roju
optymalizacja
swarm intelligence
glowworm swarm optimization
multimodal function optimization
Opis:
Glowworm Swarm Optimization algorithm is applied for the simultaneous capture of multiple optima of multimodal functions. The algorithm uses an ensemble of agents, which scan the search space and exchange information concerning a fitness of their current position. The fitness is represented by a level of a luminescent quantity called luciferin. An agent moves in direction of randomly chosen neighbour, which broadcasts higher value of the luciferin. Unfortunately, in the absence of neighbours, the agent does not move at all. This is an unwelcome feature, because it diminishes the performance of the algorithm. Additionally, in the case of parallel processing, this feature can lead to unbalanced loads. This paper presents simple modifications of the original algorithm, which improve performance of the algorithm by limiting situations, in which the agent cannot move. The paper provides results of comparison of an original and modified algorithms calculated for several multimodal test functions.
Algorytm Glowworm Swarm Optimization jest stosowany do równoczesnego odnajdywania wielu optimów funkcji multimodalnych. Algorytm używa zespołu agentów przeszukujących przestrzeń poszukiwań i wymieniających się informacjami o wartości funkcji przystosowania w danym położeniu. Funkcja przystosowania jest reprezentowana przez poziom emitującego światło pigmentu - lucyferyny. Agenci poruszają się w kierunku losowo wybranego sąsiada, który rozgłasza wyższą wartość poziomu lucyferyny. Niestety w przypadku braku sąsiadów agent nie porusza się wcale. Stanowi to niepożądaną cechę algorytmu ograniczającą jego wydajność. W przypadku przetwarzania równoległego cecha ta może prowadzić do niezrównoważenia obciążenia. Praca ta przedstawia proste modyfikacje oryginalnego algorytmu zwiększające jego wydajność poprzez ograniczanie liczby takich sytuacji, w których agent nie może się poruszyć. Przedstawione zostały wyniki porównania pracy oryginalnego i zmodyfikowanych algorytmów dla kilku funkcji testowych.
Źródło:
Computer Science; 2010, 11; 7-20
1508-2806
2300-7036
Pojawia się w:
Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Multi-swarm that learns
Autorzy:
Trojanowski, K.
Powiązania:
https://bibliotekanauki.pl/articles/969816.pdf
Data publikacji:
2010
Wydawca:
Polska Akademia Nauk. Instytut Badań Systemowych PAN
Tematy:
particle swarm optimization (PSO)
multi-swarm
dynamic optimization
memory
clusters
clustering evolving data streams
quantum particles
Opis:
This paper studies particle swarm optimization approach enriched by two versions of an extension aimed at gathering information during the optimization process. Application of these extensions, called memory mechanisms, increases computational cost, but it is spent to a benefit by incorporating the knowledge about the problem into the algorithm and this way improving its search abilities. The first mechanism is based on the idea of storing explicit solutions while the second one applies one-pass clustering algorithm to build clusters containing search experiences. The main disadvantage of the former mechanism is lack of good rules for identification of outdated solutions among the remembered ones and as a consequence unlimited growth of the memory structures as the optimization process goes. The latter mechanism uses other form of knowledge representation and thus allows us to control the amount of allocated resources more efficiently than the former one. Both mechanisms have been experimentally verified and their advantages and disadvantages in application for different types of optimized environments are discussed.
Źródło:
Control and Cybernetics; 2010, 39, 2; 359-375
0324-8569
Pojawia się w:
Control and Cybernetics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Swarm intelligence for network routing optimization
Autorzy:
Dempsey, P.
Schuster, A.
Powiązania:
https://bibliotekanauki.pl/articles/309012.pdf
Data publikacji:
2005
Wydawca:
Instytut Łączności - Państwowy Instytut Badawczy
Tematy:
network routing
swarm intelligence
ant algorithms
Opis:
This paper presents the results of a comparative study of network routing approaches. Recent advances in the field suggest that swarm intelligence may offer a robust, high quality solution. The overall aim of the study was to develop a framework to facilitate the empirical evaluation of a swarm intelligence routing approach compared to a conventional static and dynamic routing approach. This paper presents a framework for the simulation of computer networks, collection of performance statistics, generation and reuse of network topologies and traffic patterns.
Źródło:
Journal of Telecommunications and Information Technology; 2005, 3; 24-28
1509-4553
1899-8852
Pojawia się w:
Journal of Telecommunications and Information Technology
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Robotic swarm self-organisation control
Autorzy:
Hendzel, Zenon
Wiech, Jakub
Powiązania:
https://bibliotekanauki.pl/articles/387481.pdf
Data publikacji:
2019
Wydawca:
Politechnika Białostocka. Oficyna Wydawnicza Politechniki Białostockiej
Tematy:
swarm robotics self-organization
PD controller
nonholonomic robots
Opis:
This article proposes a new swarm control method using distributed proportional-derivative (PD) control for self-organisation of swarm of nonholonomic robots. Kinematics control with distributed proportional-derivative (DPD) controller enables generation of desired robot trajectory achieving collective behaviour of a robotic swarm such as aggregation and pattern formation. Proposed method is a generalisation of virtual spring-damper control used in swarm self-organisation. The article includes the control algorithm synthesis using the Lyapunov control theory and numeric simulations results.
Źródło:
Acta Mechanica et Automatica; 2019, 13, 2; 130-134
1898-4088
2300-5319
Pojawia się w:
Acta Mechanica et Automatica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Quantifying swarm resilience with simulated exploration of maze-like environments
Autorzy:
Emmons, Megan
Maciejewski, Anthony A.
Powiązania:
https://bibliotekanauki.pl/articles/27314244.pdf
Data publikacji:
2023
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Automatyki i Pomiarów
Tematy:
swarm robotics
Opis:
Artificial swarms have the potential to provide robust, efficient solutions for a broad range of applications from assisting search and rescue operations to exploring remote planets. However, many fundamental obstacles still need to be overcome to bridge the gap between theory and application. In this characterization work, we demonstrate how a human rescuer can leverage mini‐ mal local observations of emergent swarm behavior to locate a lone survivor in a maze‐like environment. The simulated robots and rescuer have limited sensing and no communication capabilities to model a worst‐case scenario. We then explore the impact of fundamental properties at the individual robot level on the utility of the emergent behavior to direct swarm design choices. We further demonstrate the relative robustness of the simulated robotic swarm by quantifying how reasonable probabilistic failure affects the rescue time in a complex environment. These results are compared to the theo‐ retical performance of a single wall‐following robot to further demonstrate the potential benefits of utilizing robotic swarms for rescue operations.
Źródło:
Journal of Automation Mobile Robotics and Intelligent Systems; 2023, 17, 2; 3--11
1897-8649
2080-2145
Pojawia się w:
Journal of Automation Mobile Robotics and Intelligent Systems
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Celestial navigation fix based on particle swarm optimization
Autorzy:
Tsou, M.-C.
Powiązania:
https://bibliotekanauki.pl/articles/258524.pdf
Data publikacji:
2015
Wydawca:
Politechnika Gdańska. Wydział Inżynierii Mechanicznej i Okrętownictwa
Tematy:
particle swarm optimization (PSO)
Celestial navigation
Intercept method
Opis:
A technique for solving celestial fix problems is proposed in this study. This method is based on Particle Swarm Optimization from the field of swarm intelligence, utilizing its superior optimization and searching abilities to obtain the most probable astronomical vessel position. In addition to being applicable to two-body fix, multi-body fix, and high-altitude observation problems, it is also less reliant on the initial dead reckoning position. Moreover, by introducing spatial data processing and display functions in a Geographical Information System, calculation results and chart work used in Circle of Position graphical positioning can both be integrated. As a result, in addition to avoiding tedious and complicated computational and graphical procedures, this work has more flexibility and is more robust when compared to other analytical approaches.
Źródło:
Polish Maritime Research; 2015, 3; 20-27
1233-2585
Pojawia się w:
Polish Maritime Research
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A comparative study on multi-swarm optimisation and bat algorithm for unconstrained non linear optimisation problems
Autorzy:
Baidoo, E.
Opoku Oppong, S
Powiązania:
https://bibliotekanauki.pl/articles/117918.pdf
Data publikacji:
2016
Wydawca:
Polskie Towarzystwo Promocji Wiedzy
Tematy:
swarm intelligence
bio-inspired
bat algorithm
multi-swarm optimisation
nonlinear optimisation
Opis:
A study branch that mocks-up a population of network of swarms or agents with the ability to self-organise is Swarm intelligence. In spite of the huge amount of work that has been done in this area in both theoretically and empirically and the greater success that has been attained in several aspects, it is still ongoing and at its infant stage. An immune system, a cloud of bats, or a flock of birds are distinctive examples of a swarm system. In this study, two types of meta-heuristics algorithms based on population and swarm intelligence - Multi Swarm Optimization (MSO) and Bat algorithms (BA) – are set up to find optimal solutions of continuous non-linear optimisation models. In order to analyze and compare perfect solutions at the expense of performance of both algorithms, a chain of computational experiments on six generally used test functions for assessing the accuracy and the performance of algorithms, in swarm intelligence fields are used. Computational experiments show that MSO algorithm seems much superior to BA.
Źródło:
Applied Computer Science; 2016, 12, 4; 59-77
1895-3735
Pojawia się w:
Applied Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Magnetic Particle Swarm Optimization
Autorzy:
Prampero, P. S.
Attux, R.
Powiązania:
https://bibliotekanauki.pl/articles/91715.pdf
Data publikacji:
2012
Wydawca:
Społeczna Akademia Nauk w Łodzi. Polskie Towarzystwo Sieci Neuronowych
Tematy:
Magnetic Particle Swarm Optimization
multimodal search
metaheuristics
sensitivity analysis
convergence
Opis:
This paper presents and analyzes a search paradigm called Magnetic Particle Swarm Optimization. This paradigm gives support to two algorithms that combine elements of the behavior of magnetic dipoles within a framework that includes several elements that are known to be essential to effective multimodal search. The algorithms are applied to a variety of functions and their performance is compared with those of a number of related well-established metaheuristics. In addition to that, convergence and sensitivity analyses are presented for the first time.
Źródło:
Journal of Artificial Intelligence and Soft Computing Research; 2012, 2, 1; 59-72
2083-2567
2449-6499
Pojawia się w:
Journal of Artificial Intelligence and Soft Computing Research
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Fixing Design Inconsistencies of Polymorphic Methods Using Swarm Intelligence
Autorzy:
George, Renu
Samuel, Philip
Powiązania:
https://bibliotekanauki.pl/articles/1818478.pdf
Data publikacji:
2021
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
UML models
software design inconsistency
polymorphism
particle swarm optimization
Opis:
Background: Modern industry is heavily dependent on software. The complexity of designing and developing software is a serious engineering issue. With the growing size of software systems and increase in complexity, inconsistencies arise in software design and intelligent techniques are required to detect and fix inconsistencies. Aim: Current industrial practice of manually detecting inconsistencies is time consuming, error prone and incomplete. Inconsistencies arising as a result of polymorphic object interactions are hard to trace. We propose an approach to detect and fix inconsistencies in polymorphic method invocations in sequence models. Method: A novel intelligent approach based on self regulating particle swarm optimization to solve the inconsistency during software system design is presented. Inconsistency handling is modelled as an optimization problem that uses a maximizing fitness function. The proposed approach also identifies the changes required in the design diagrams to fix the inconsistencies. Result: The method is evaluated on different software design models involving static and dynamic polymorphism and inconsistencies are detected and resolved. Conclusion: Ensuring consistency of design is highly essential to develop quality software and solves a major design issue for practitioners. In addition, our approach helps to reduce the time and cost of developing software.
Źródło:
e-Informatica Software Engineering Journal; 2021, 15, 1; 7--27
1897-7979
Pojawia się w:
e-Informatica Software Engineering Journal
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Zastosowanie algorytmów rojowych do optymalizacji parametrów w modelach układów regulacji
Application of swarm intelligence algorithms to optimization of control system models
Autorzy:
Tomera, M.
Powiązania:
https://bibliotekanauki.pl/articles/269153.pdf
Data publikacji:
2015
Wydawca:
Politechnika Gdańska. Wydział Elektrotechniki i Automatyki
Tematy:
algorytmy rojowe
optymalizacja parametrów
algorytm mrówkowy
algorytm sztucznej kolonii pszczół
algorytm optymalizacji rojem cząstek
swarm intelligence
swarm based optimization
ant colony optimization
Artificial Bee Colony
particle swarm optimization (PSO)
Opis:
W pracy przedstawione zostały algorytmy rojowe, takie jak: algorytm mrówkowy, zmodyfikowany algorytm mrówkowy, algorytm sztucznej kolonii pszczół oraz algorytm optymalizacji rojem cząstek. Dla tych algorytmów przygotowane zostało oprogramowanie w Matlabie, pozwalające na optymalizację parametrów poszukiwanych modeli matematycznych, wyznaczanych na podstawie przeprowadzonych testów identyfikacyjnych lub na optymalizację parametrów regulatorów zastosowanych w modelach matematycznych układów sterowania.
The paper presents the swarm intelligence algorithms, such as: ant colony algorithm (ACO), the modified ant colony algorithm (MACO), the artificial bee colony algorithm (ABC) and the particle swarm optimization algorithm (PSO). Ant colony optimization (ACO) based upon the observation of the behavior of ant colonies looking for food in the surrounding anthill. Feeding ants it is based on finding the shortest path transitions between a food source and the anthill. In the process of foraging ants on their paths crossing from the nest to a food source and back, they leave a pheromone trail. The work presents also the modified ant colony algorithm (MACO). This algorithm is based on searching the solution space surrounded by the best solution obtained in the previous iteration. If you find a local minimum, the proposed algorithm uses pheromone to find a new solution space, while retaining the position information current local minimum. The artificial bee colony algorithm is one of the well-known swarm intelligence algorithms. In the past decade there has been created several different algorithms based on the observation of the behavior of cooperative bees. Among them, the most frequently analyzed and used is bee algorithm proposed in 2005 by Dervis Karaboga and was be used in the proposed paper. The particle swarm optimization algorithm (PSO) is based on adjusting the change speed of the moving particles to a speed of particles movement in the neighborhood. Particle optimization algorithm is one of the computational techniques derived on the basis of swarm behavior such as flocks of birds and schools of fish, which is the basis for the functioning of the exchange of information to enable them to cooperate. It was noticed that the animals in the herd tend to maintain the optimum distance from their neighbors, by appropriate adjustment of their speed. This method allows the synchronous and collision-free motion, often accompanied by sudden changes of direction and due to the rearrangement of the optimal formation. For these algorithms has been prepared the software in Matlab, allowing to optimization of the mathematical models designated on the basis of the carried out identification tests and control parameters used in the mathematical model of the control system.
Źródło:
Zeszyty Naukowe Wydziału Elektrotechniki i Automatyki Politechniki Gdańskiej; 2015, 46; 97-102
1425-5766
2353-1290
Pojawia się w:
Zeszyty Naukowe Wydziału Elektrotechniki i Automatyki Politechniki Gdańskiej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Improved dolphin swarm optimization algorithm based on information entropy
Autorzy:
Li, Y.
Wang, X.
Powiązania:
https://bibliotekanauki.pl/articles/200085.pdf
Data publikacji:
2019
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
dolphin swarm optimization
information entropy
convergence
self-adaptive
combinational optimization
Opis:
In order to overcome the shortcomings of the dolphin algorithm, which is prone to falling into local optimum and premature conver-gence, an improved dolphin swarm algorithm, based on the standard dolphin algorithm, was proposed. As a measure of uncertainty, information entropy was used to measure the search stage in the dolphin swarm algorithm. Adaptive step size parameters and dynamic balance factors were introduced to correlate the search step size with the number of iterations and fitness, and to perform adaptive adjustment of the algorithm. Simulation experiments show that, comparing with the basic algorithm and other algorithms, the improved dolphin swarm algorithm is feasible and effective.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2019, 67, 4; 679-685
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Active power loss reduction by novel feral cat swarm optimization algorithm
Autorzy:
Lenin, Kanagasabai
Powiązania:
https://bibliotekanauki.pl/articles/384742.pdf
Data publikacji:
2020
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Automatyki i Pomiarów
Tematy:
optimal reactive power
Transmission loss
Feral Cat Swarm Optimization Algorithm
Opis:
In this paper Feral Cat Swarm Optimization (FCS) Algorithm is proposed to solve optimal reactive power problem. Projected methodology has been modeled based on the activities of the feral cats. They have two main phases primarily “seeking mode”, “tracing mode”. In the proposed FCS algorithm, population of feral cats are created and arbitrarily scattered in the solution space, with every feral cat representing a solution. Produced population is alienated into two subgroups. One group will observe their surroundings which come under the seeking mode and another group moving towards the prey which will come under the tracing mode. New-fangled positions, fitness functions will be calculated subsequent to categorization of feral cats for seeking mode and tracing mode, through that cat with the most excellent solution will be accumulated in the memory. Feral Cat Swarm Optimization (FCS) Algorithm has been tested in standard IEEE 30 bus test system and simulation results show the projected algorithm reduced the real power loss considerably.
Źródło:
Journal of Automation Mobile Robotics and Intelligent Systems; 2020, 14, 2; 25-29
1897-8649
2080-2145
Pojawia się w:
Journal of Automation Mobile Robotics and Intelligent Systems
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Simulation on vessel intelligent collision avoidance based on artificial fish swarm algorithm
Autorzy:
Li, W.
Ma, W.
Powiązania:
https://bibliotekanauki.pl/articles/260153.pdf
Data publikacji:
2016
Wydawca:
Politechnika Gdańska. Wydział Inżynierii Mechanicznej i Okrętownictwa
Tematy:
simulation
collision avoidance
artificial fish swarm algorithm
Opis:
TAs the rapid development of the ship equipments and navigation technology, vessel intelligent collision avoidance theory was researched world widely. Meantime, more and more ship intelligent collision avoidance products are put into use. It not only makes the ship much safer, but also lighten the officers work intensity and improve the ship’s economy. The paper based on the International Regulation for Preventing Collision at sea and ship domain theories, with the ship proceeding distance when collision avoidance as the objective function, through the artificial fish swarm algorithm to optimize the collision avoidance path, and finally simulates overtaking situation, crossing situation and head-on situation three classic meeting situation of ships on the sea by VC++ computer language. Calculation and simulation results are basically consistent with the actual situation which certifies that its validity.
Źródło:
Polish Maritime Research; 2016, S 1; 138-143
1233-2585
Pojawia się w:
Polish Maritime Research
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Controlling a robot swarm with EV3 modules for mobile indoor mapping
Autorzy:
Pawłowicz, B.
Sierpiński, M.
Trybus, B.
Powiązania:
https://bibliotekanauki.pl/articles/114160.pdf
Data publikacji:
2016
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
robot swarm
RFID
WinRT
EV3
Opis:
The goal of the paper is to present a lab application controlling a swarm of mobile robots built with Lego Mindstorms bricks of EV3 series. The application named BrickCenter is based on Windows Runtime (WinRT) architecture and allows the user to manage robots by controlling selected motors through a keyboard or a gamepad. The application is able to read measurements acquired from standard sensors connected to EV3 controllers. It is a basis for a concept of supervisory control of a robot swarm designed for indoor mapping with RFID readers.
Źródło:
Measurement Automation Monitoring; 2016, 62, 8; 274-277
2450-2855
Pojawia się w:
Measurement Automation Monitoring
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Particle swarm optimization for tuning PSS-PID controller of synchronous generator
Autorzy:
Derrar, A.
Naceri, A.
Powiązania:
https://bibliotekanauki.pl/articles/384775.pdf
Data publikacji:
2017
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Automatyki i Pomiarów
Tematy:
synchronous generator
PSS
particle swarm optimization (PSO)
PID controller
Opis:
In this paper the design an optimal PSS-PID controller for single machine connected to an infinite bus (SMIB). We presented a novel application of particle swarm optimization (PSO) for the optimal tuning of the new PSS-PID controller. The proposed approach has superior features, including easy implementation, stable convergence characteristic and good computational efficiency. The synchronous generator is modeled and the PSO algorithm is implemented in Simulink of Matlab. The obtained results have proved that (PSO) are a powerful tools for optimizing the PSS parameters, and more robustness of the system IEEE SMIB.
Źródło:
Journal of Automation Mobile Robotics and Intelligent Systems; 2017, 11, 1; 48-52
1897-8649
2080-2145
Pojawia się w:
Journal of Automation Mobile Robotics and Intelligent Systems
Dostawca treści:
Biblioteka Nauki
Artykuł

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies