Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "signed Roman k-dominating function" wg kryterium: Wszystkie pola


Wyświetlanie 1-4 z 4
Tytuł:
Weak signed Roman k-domination in digraphs
Autorzy:
Volkmann, Lutz
Powiązania:
https://bibliotekanauki.pl/articles/29519480.pdf
Data publikacji:
2024
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
digraph
weak signed Roman k-dominating function
weak signed Roman k-domination number
signed Roman k-dominating function
signed Roman k-domination number
Opis:
Let $ k ≥ 1 $ be an integer, and let $ D $ be a finite and simple digraph with vertex set $ V (D) $. A weak signed Roman k-dominating function (WSRkDF) on a digraph $ D $ is a function $ f : V (D) → {−1, 1, 2} $ satisfying the condition that $ \Sigma_{x∈N^−[v]} f(x) ≥ k $ for each v ∈ V (D), where $ N^− [v] $ consists of $ v $ and all vertices of $ D $ from which arcs go into $ v $. The weight of a WSRkDF $ f $ is $ w(f) = \Sigma_{v∈V} (D) f(v) $. The weak signed Roman k-domination number $ \gamma_{wsR}^k (D) $ is the minimum weight of a WSRkDF on $ D $. In this paper we initiate the study of the weak signed Roman k-domination number of digraphs, and we present different bounds on $ \gamma_{wsR}^k (D) $. In addition, we determine the weak signed Roman k-domination number of some classes of digraphs. Some of our results are extensions of well-known properties of the weak signed Roman domination number $ \gamma_{wsR} (D) = \gamma_{wsR}^1 (D) $ and the signed Roman k-domination number $ \gamma_{sR}^k (D) $.
Źródło:
Opuscula Mathematica; 2024, 44, 2; 285-296
1232-9274
2300-6919
Pojawia się w:
Opuscula Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Bounds on the Signed Roman k-Domination Number of a Digraph
Autorzy:
Chen, Xiaodan
Hao, Guoliang
Volkmann, Lutz
Powiązania:
https://bibliotekanauki.pl/articles/31343713.pdf
Data publikacji:
2019-02-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
signed Roman k-dominating function
signed Roman k-domination number
digraph
oriented tree
Opis:
Let $k$ be a positive integer. A signed Roman $k$-dominating function (SRkDF) on a digraph $D$ is a function $ f : V (D) \rightarrow \{−1, 1, 2 \} $ satisfying the conditions that (i) $ \Sigma_{ x \in N^− [v] } f(x) \ge k $ for each $ v \in V (D) $, where $ N^− [v] $ is the closed in-neighborhood of $v$, and (ii) each vertex $u$ for which $f(u) = −1$ has an in-neighbor $v$ for which $f(v) = 2$. The weight of an SRkDF $f$ is $ \Sigma_{ v \in V (D) } f(v) $. The signed Roman $k$-domination number $ \gamma_{sR}^k (D) $ of a digraph $D$ is the minimum weight of an SRkDF on $D$. We determine the exact values of the signed Roman $k$-domination number of some special classes of digraphs and establish some bounds on the signed Roman $k$-domination number of general digraphs. In particular, for an oriented tree $T$ of order $n$, we show that $ \gamma_{sR}^2 (T) \ge (n + 3)//2 $, and we characterize the oriented trees achieving this lower bound.
Źródło:
Discussiones Mathematicae Graph Theory; 2019, 39, 1; 67-79
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Signed Roman Edge k -Domination in Graphs
Autorzy:
Asgharsharghi, Leila
Sheikholeslami, Seyed Mahmoud
Volkmann, Lutz
Powiązania:
https://bibliotekanauki.pl/articles/31342188.pdf
Data publikacji:
2017-02-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
signed Roman edge k -dominating function
signed Roman edge k -domination number
Opis:
Let $ k \ge 1 $ be an integer, and $ G = (V, E) $ be a finite and simple graph. The closed neighborhood $ N_G [e]$ of an edge $e$ in a graph $G$ is the set consisting of $e$ and all edges having a common end-vertex with $e$. A signed Roman edge $k$-dominating function (SREkDF) on a graph $G$ is a function $ f : E \rightarrow {−1, 1, 2} $ satisfying the conditions that (i) for every edge $e$ of $G$, $ \Sigma_{ x \in N_G [e] } f(x) \ge k $ and (ii) every edge e for which $f(e) = −1$ is adjacent to at least one edge $ e^′ $ for which $ f(e^′) = 2 $. The minimum of the values $ \Sigma_{e \in E} f(e) $, taken over all signed Roman edge $k$-dominating functions $f$ of $G$ is called the signed Roman edge $k$-domination number of $G$, and is denoted by $ \gamma_{sRk}^' (G) $. In this paper we initiate the study of the signed Roman edge $k$-domination in graphs and present some (sharp) bounds for this parameter.
Źródło:
Discussiones Mathematicae Graph Theory; 2017, 37, 1; 39-53
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The Signed Total Roman k-Domatic Number Of A Graph
Autorzy:
Volkmann, Lutz
Powiązania:
https://bibliotekanauki.pl/articles/31341581.pdf
Data publikacji:
2017-11-27
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
signed total Roman k-dominating function
signed total Roman k-domination number
signed total Roman k-domatic number
Opis:
Let $ k \ge 1 $ be an integer. A signed total Roman $k$-dominating function on a graph $G$ is a function $ f : V (G) \rightarrow {−1, 1, 2} $ such that $ \Sigma_{ u \in N(v) } f(u) \ge k $ for every $ v \in V (G) $, where $ N(v) $ is the neighborhood of $ v $, and every vertex $ u \in V (G) $ for which $ f(u) = −1 $ is adjacent to at least one vertex w for which $ f(w) = 2 $. A set $ { f_1, f_2, . . ., f_d} $ of distinct signed total Roman $k$-dominating functions on $G$ with the property that $ \Sigma_{i=1}^d f_i(v) \le k $ for each $ v \in V (G) $, is called a signed total Roman $k$-dominating family (of functions) on $G$. The maximum number of functions in a signed total Roman $k$-dominating family on $G$ is the signed total Roman $k$-domatic number of $G$, denoted by $ d_{stR}^k (G) $. In this paper we initiate the study of signed total Roman $k$-domatic numbers in graphs, and we present sharp bounds for $ d_{stR}^k (G) $. In particular, we derive some Nordhaus-Gaddum type inequalities. In addition, we determine the signed total Roman $k$-domatic number of some graphs.
Źródło:
Discussiones Mathematicae Graph Theory; 2017, 37, 4; 1027-1038
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-4 z 4

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies