- Tytuł:
- A discrepancy principle for Tikhonov regularization with approximately specified data
- Autorzy:
-
Thamban Nair, M.
Schock, Eberhard - Powiązania:
- https://bibliotekanauki.pl/articles/1294256.pdf
- Data publikacji:
- 1998
- Wydawca:
- Polska Akademia Nauk. Instytut Matematyczny PAN
- Tematy:
-
ill-posed problems
minimal norm least-squares solution
Moore-Penrose inverse
Tikhonov regularization
discrepancy principle
optimal rate - Opis:
- Many discrepancy principles are known for choosing the parameter α in the regularized operator equation $(T*T + αI)x_α^δ = T*y^δ$, $|y - y^δ| ≤ δ$, in order to approximate the minimal norm least-squares solution of the operator equation Tx = y. We consider a class of discrepancy principles for choosing the regularization parameter when T*T and $T*y^δ$ are approximated by Aₙ and $zₙ^δ$ respectively with Aₙ not necessarily self-adjoint. This procedure generalizes the work of Engl and Neubauer (1985), and particular cases of the results are applicable to the regularized projection method as well as to a degenerate kernel method considered by Groetsch (1990).
- Źródło:
-
Annales Polonici Mathematici; 1998, 69, 3; 197-205
0066-2216 - Pojawia się w:
- Annales Polonici Mathematici
- Dostawca treści:
- Biblioteka Nauki