Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

A discrepancy principle for Tikhonov regularization with approximately specified data

Tytuł:
A discrepancy principle for Tikhonov regularization with approximately specified data
Autorzy:
Thamban Nair, M.
Schock, Eberhard
Powiązania:
https://bibliotekanauki.pl/articles/1294256.pdf
Data publikacji:
1998
Wydawca:
Polska Akademia Nauk. Instytut Matematyczny PAN
Tematy:
ill-posed problems
minimal norm least-squares solution
Moore-Penrose inverse
Tikhonov regularization
discrepancy principle
optimal rate
Źródło:
Annales Polonici Mathematici; 1998, 69, 3; 197-205
0066-2216
Język:
angielski
Prawa:
Wszystkie prawa zastrzeżone. Swoboda użytkownika ograniczona do ustawowego zakresu dozwolonego użytku
Dostawca treści:
Biblioteka Nauki
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
Many discrepancy principles are known for choosing the parameter α in the regularized operator equation $(T*T + αI)x_α^δ = T*y^δ$, $|y - y^δ| ≤ δ$, in order to approximate the minimal norm least-squares solution of the operator equation Tx = y. We consider a class of discrepancy principles for choosing the regularization parameter when T*T and $T*y^δ$ are approximated by Aₙ and $zₙ^δ$ respectively with Aₙ not necessarily self-adjoint. This procedure generalizes the work of Engl and Neubauer (1985), and particular cases of the results are applicable to the regularized projection method as well as to a degenerate kernel method considered by Groetsch (1990).

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies