Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "recurrent neural network" wg kryterium: Wszystkie pola


Tytuł:
Heuristic modeling of objects and processes using dynamic neural networks
Heurystyczne modelowanie obiektów i procesów przy pomocy dynamicznych sieci neuronowych
Autorzy:
Przystałka, P.
Powiązania:
https://bibliotekanauki.pl/articles/327816.pdf
Data publikacji:
2006
Wydawca:
Polska Akademia Nauk. Polskie Towarzystwo Diagnostyki Technicznej PAN
Tematy:
sztuczna sieć neuronowa
lokalnie rekurencyjna sieć neuronowa
systemy dynamiczne
metoda quasi-Newtonowska
modelowanie heurystyczne
artificial neural network
locally recurrent neural network
dynamic systems
quasi-Newton methods
heuristic modelling
Opis:
The methodology of heuristic modeling is one of the subjects included in the activities developed by the Department of Fundamentals of Machinery Design [4, 6]. Among all the approaches of heuristic modeling some of the most common are artificial neural networks. There are many papers and books devoted to applications of neural networks for modeling dynamic systems [1, 2, 4, 5, 6, 7]. In this paper, known approach basing on dynamic neuron model is presented (dynamic neuron with IIR filter in the activation block [2]) but some developments are introduced. Locally recurrent networks which are composed of dynamic neural units described in [2, 5, 7] are able to model behavior of complex dynamic systems. Nevertheless, they have one major disadvantage, that is, neural networks composed of these neurons are not able to represent stochastic behaviors of some objects [4,6]. By introducing the ARMAX (or ARX) system into dynamic neuron model author has received dynamic neuron unit that never behaves in the same way (it brings an artificial neuron closer and closer to the biological model). In this paper the author presents formal description of dynamic neuron unit with ARMAX system in the feedback block. There are also described a general structure of dynamic neural network composed of these neurons, two known training methods and some commonly used quality measures. At the end of the paper three examples of applications are given.
Metodologia heurystycznego modelowania obiektów i procesów jest jednym z kierunków badań rozwijanym prze Katedrę Podstaw Konstrukcji Maszyn [4, 6]. Spośród wielu metod modelowania heurystycznego duże znaczenie odgrywają metody bazujące na sztucznych sieciach neuronowych. Można wyróżnić wiele ciekawych prac badawczych prowadzonych w kierunku modelowania systemów dynamicznych z zastosowaniem tego typu narzędzia [1, 2, 4, 5, 6, 7]. W artykule zaprezentowano znane podejście bazujące na dynamicznych neuronach (dynamiczny neuron z filtrem IIR w bloku aktywacyjnym [2]) z pewnymi modyfikacjami. Lokalnie rekurencyjne sieci neuronowe złożone z dynamicznych neuronów opisane w [2, 5, 7] nadają się do modelowania zachowania złożonych systemów dynamicznych. Jednakże, posiadają one jedną główną wadę tzn. nie są zdolne do reprezentowania zachowania losowego niektórych obiektów [4, 6]. Poprzez wprowadzenie systemu typu ARMAX (ARX) do modeli dynamicznych neuronów autor otrzymał dynamiczny model neuronu, który nigdy nie zachowują się w ten sam sposób (przybliża to model sztucznego neuronu do jego biologicznego wzoru). W artykule autor prezentuje formalny opis dynamicznego neuronu z systemem typu ARMAX w bloku sprzężenie zwrotnego. Opisuje również ogólną strukturę dynamicznej sieci neuronowej złożonej z tych neuronów, dwa znane algorytmy trenujące oraz powszechnie stosowane miary jakości. Przykładowe zastosowania opisywanych sieci zaprezentowane są w końcowym fragmencie opracowania.
Źródło:
Diagnostyka; 2006, 2(38); 31-36
1641-6414
2449-5220
Pojawia się w:
Diagnostyka
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Recurrent neural networks for dynamic reliability analysis
Autorzy:
Cadini, F.
Zio, E.
Pedroni, N.
Powiązania:
https://bibliotekanauki.pl/articles/2069583.pdf
Data publikacji:
2007
Wydawca:
Uniwersytet Morski w Gdyni. Polskie Towarzystwo Bezpieczeństwa i Niezawodności
Tematy:
dynamic reliability analysis
infinite impulse response
locally recurrent neural network
long-term non-linear dynamics
system state memory
simplified nuclear reactor
Opis:
A dynamic approach to the reliability analysis of realistic systems is likely to increase the computational burden, due to the need of integrating the dynamics with the system stochastic evolution. Hence, fast-running models of process evolution are sought. In this respect, empirical modelling is becoming a popular approach to system dynamics simulation since it allows identifying the underlying dynamic model by fitting system operational data through a procedure often referred to as ‘learning’. In this paper, a Locally Recurrent Neural Network (LRNN) trained according to a Recursive Back-Propagation (RBP) algorithm is investigated as an efficient tool for fast dynamic simulation. An application is performed with respect to the simulation of the non-linear dynamics of a nuclear reactor, as described by a simplified model of literature.
Źródło:
Journal of Polish Safety and Reliability Association; 2007, 1; 45--53
2084-5316
Pojawia się w:
Journal of Polish Safety and Reliability Association
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A new approach to image reconstruction from projections using a recurrent neural network
Autorzy:
Cierniak, R.
Powiązania:
https://bibliotekanauki.pl/articles/907945.pdf
Data publikacji:
2008
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
rekonstrukcja obrazu
sieć neuronowa
sieć rekurencyjna
image reconstruction from projections
neural networks
recurrent net
Opis:
A new neural network approach to image reconstruction from projections considering the parallel geometry of the scanner is presented. To solve this key problem in computed tomography, a special recurrent neural network is proposed. The reconstruction process is performed during the minimization of the energy function in this network. The performed computer simulations show that the neural network reconstruction algorithm designed to work in this way outperforms conventional methods in the obtained image quality.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2008, 18, 2; 147-157
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Local stability conditions for discrete-time cascade locally recurrent neural networks
Autorzy:
Patan, K.
Powiązania:
https://bibliotekanauki.pl/articles/907772.pdf
Data publikacji:
2010
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
sieć lokalnie rekurencyjna
stabilność
stabilizacja
uczenie się
optymalizacja ograniczona
locally recurrent neural network
stability
stabilization
learning
constrained optimization
Opis:
The paper deals with a specific kind of discrete-time recurrent neural network designed with dynamic neuron models. Dynamics are reproduced within each single neuron, hence the network considered is a locally recurrent globally feedforward. A crucial problem with neural networks of the dynamic type is stability as well as stabilization in learning problems. The paper formulates local stability conditions for the analysed class of neural networks using Lyapunov's first method. Moreover, a stabilization problem is defined and solved as a constrained optimization task. In order to tackle this problem, a gradient projection method is adopted. The efficiency and usefulness of the proposed approach are justified by using a number of experiments.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2010, 20, 1; 23-34
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Recurrent neural identification and control of a continuous bioprocess via first and second order learning
Autorzy:
Baruch, I.
Mariaca-Gaspar, C. R.
Powiązania:
https://bibliotekanauki.pl/articles/385133.pdf
Data publikacji:
2010
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Automatyki i Pomiarów
Tematy:
backpropagation learning
direct adaptive neural control
indirect adaptive sliding mode control
Kalman filter recurrent neural network identifier
Levenberg-Marquardt learning
Opis:
This paper applies a new Kalman Filter Recurrent Neural Network (KFRNN) topology and a recursive Levenberg-Mar quardt (L-M) learning algorithm capable to estimate para meters and states of highly nonlinear unknown plant in noisy environment. The proposed KFRNN identifier, learned by the Backpropagation and L-M learning algorithm, was incorporated in a direct and indirect adaptive neural con trol schemes. The proposed control schemes were applied for real-time recurrent neural identification and control of a continuous stirred tank bioreactor model, where fast convergence, noise filtering and low mean squared error of reference tracking were achieved.
Źródło:
Journal of Automation Mobile Robotics and Intelligent Systems; 2010, 4, 4; 37-52
1897-8649
2080-2145
Pojawia się w:
Journal of Automation Mobile Robotics and Intelligent Systems
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Optimal training strategies for locally recurrent neural networks
Autorzy:
Patan, K.
Patan, M.
Powiązania:
https://bibliotekanauki.pl/articles/1396735.pdf
Data publikacji:
2011
Wydawca:
Społeczna Akademia Nauk w Łodzi. Polskie Towarzystwo Sieci Neuronowych
Tematy:
training schedule
neural network
Fisher information matrix
network parameters
optimal experimental design
convex optimization theory
Opis:
The problem of determining an optimal training schedule for locally recurrent neural network is discussed. Specifically, the proper choice of the most informative measurement data guaranteeing the reliable prediction of neural network response is considered. Based on a scalar measure of performance defined on the Fisher information matrix related to the network parameters, the problem was formulated in terms of optimal experimental design. Then, its solution can be readily achieved via adaptation of effective numerical algorithms based on the convex optimization theory. Finally, some illustrative experiments are provided to verify the presented approach.
Źródło:
Journal of Artificial Intelligence and Soft Computing Research; 2011, 1, 2; 103-114
2083-2567
2449-6499
Pojawia się w:
Journal of Artificial Intelligence and Soft Computing Research
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Robustifying analysis of the direct adaptive control of unknown multivariable nonlinear systems based on a new neuro-fuzzy method
Autorzy:
Theodoridis, D. C.
Boutalis, Y.S.
Christodoulou, M. A.
Powiązania:
https://bibliotekanauki.pl/articles/91598.pdf
Data publikacji:
2011
Wydawca:
Społeczna Akademia Nauk w Łodzi. Polskie Towarzystwo Sieci Neuronowych
Tematy:
nonlinear systems
control
neuro-fuzzy dynamical system
fuzzy systems
FS
fuzzy recurrent high order neural network
F-RHONN
adaptive regulator
parameter
“Hopping”
“Modified Hopping”
modeling errors
asymptotic regulation
Opis:
In this paper, we are dealing with the problem of directly regulating unknown multivariable affine in the control nonlinear systems and its robustness analysis. The method employs a new Neuro-Fuzzy Dynamical System definition, which uses the concept of Fuzzy Systems (FS) operating in conjunction with High Order Neural Networks. In this way the unknown plant is modeled by a fuzzy - recurrent high order neural network structure (F-RHONN), which is of the known structure considering the neglected nonlinearities. The development is combined with a sensitivity analysis of the closed loop in the presence of modeling imperfections and provides a comprehensive and rigorous analysis showing that our adaptive regulator can guarantee the convergence of states to zero or at least uniform ultimate boundedness of all signals in the closed loop when a not-necessarily-known modeling error is applied. The existence and boundedness of the control signal is always assured by employing a method of parameter “Hopping” and “Modified Hopping”, which appears in the weight updating laws. Simulations illustrate the potency of the method showing that by following the proposed procedure one can obtain asymptotic regulation despite the presence of modeling errors. Comparisons are also made to simple recurrent high order neural network (RHONN) controllers, showing that our approach is superior to the case of simple RHONN’s.
Źródło:
Journal of Artificial Intelligence and Soft Computing Research; 2011, 1, 1; 59-79
2083-2567
2449-6499
Pojawia się w:
Journal of Artificial Intelligence and Soft Computing Research
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Modeling of shape memory alloy springs using a recurrent neural network
Autorzy:
Kardan, I
Abiri, R.
Kabganian, M.
Vahabi, M.
Powiązania:
https://bibliotekanauki.pl/articles/279784.pdf
Data publikacji:
2013
Wydawca:
Polskie Towarzystwo Mechaniki Teoretycznej i Stosowanej
Tematy:
artificial neural networks
smart materials
shape memory alloy springs
Opis:
In this paper, a recurrent neural network structure is proposed for the modeling of the behavior of shape memory alloy springs. Numerous mathematical modeling and experimental evaluations show that the force exerted by SMAs, aside from their length and applied voltages, depends on the loading path. Therefore, in addition to the applied voltage and deformation, a feedback of the voltage applied to, and the force exerted by the SMA spring in the previous time step is included in the inputs to this neural network to represent the loading path. Fed by adequate inputs, the NN estimates the output force of the spring. The results of some thermal loadings of the spring at various fixed lengths and mechanical loadings at various constant voltages are used to train the NN. The performance of the NN model is then evaluated for some constant weight loadings which are not learnt by the NN. Simulation results indicate that compared to other neural network structures, the proposed structure learns the behavior of the SMA spring faster (in less iteration). Moreover, it provides a more general model, i.e. this NN model effectively estimates the output force for almost all possible loadings.
Źródło:
Journal of Theoretical and Applied Mechanics; 2013, 51, 3; 711-718
1429-2955
Pojawia się w:
Journal of Theoretical and Applied Mechanics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A class of neuro-computational methods for assamese fricative classification
Autorzy:
Patgiri, C.
Sarma, M.
Sarma, K. K.
Powiązania:
https://bibliotekanauki.pl/articles/91763.pdf
Data publikacji:
2015
Wydawca:
Społeczna Akademia Nauk w Łodzi. Polskie Towarzystwo Sieci Neuronowych
Tematy:
neuro-computational classifier
fricative phonemes
Assamese language
Recurrent Neural Network
RNN
neuro fuzzy classifier
linear prediction cepstral coefficients
LPCC
self-organizing map
SOM
adaptive neuro-fuzzy inference system
ANFIS
klasyfikator neuronowy
klasyfikator neuronowo rozmyty
sieć Kohonena
Opis:
In this work, a class of neuro-computational classifiers are used for classification of fricative phonemes of Assamese language. Initially, a Recurrent Neural Network (RNN) based classifier is used for classification. Later, another neuro fuzzy classifier is used for classification. We have used two different feature sets for the work, one using the specific acoustic-phonetic characteristics and another temporal attributes using linear prediction cepstral coefficients (LPCC) and a Self Organizing Map (SOM). Here, we present the experimental details and performance difference obtained by replacing the RNN based classifier with an adaptive neuro fuzzy inference system (ANFIS) based block for both the feature sets to recognize Assamese fricative sounds.
Źródło:
Journal of Artificial Intelligence and Soft Computing Research; 2015, 5, 1; 59-70
2083-2567
2449-6499
Pojawia się w:
Journal of Artificial Intelligence and Soft Computing Research
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Dynamic network functional comparison via approximate-bisimulation
Autorzy:
Donnarumma, F.
Murano, A.
Prevete, R.
Powiązania:
https://bibliotekanauki.pl/articles/206758.pdf
Data publikacji:
2015
Wydawca:
Polska Akademia Nauk. Instytut Badań Systemowych PAN
Tematy:
continuous time recurrent neural network
dynamic networks
bisimulation
network equivalence
Opis:
It is generally unknown how to formally determine whether different neural networks have a similar behaviour. This question intimately relates to the problem of finding a suitable similarity measure to identify bounds on the input-output response distances of neural networks, which has several interesting theoretical and computational implications. For example, it can allow one to speed up the learning processes by restricting the network parameter space, or to test the robustness of a network with respect to parameter variation. In this paper we develop a procedure that allows for comparing neural structures among them. In particular, we consider dynamic networks composed of neural units, characterised by non-linear differential equations, described in terms of autonomous continuous dynamic systems. The comparison is established by importing and adapting from the formal verification setting the concept of δ−approximate bisimulations techniques for non-linear systems. We have positively tested the proposed approach over continuous time recurrent neural networks (CTRNNs).
Źródło:
Control and Cybernetics; 2015, 44, 1; 99-127
0324-8569
Pojawia się w:
Control and Cybernetics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Basic concepts of dynamic recurrent neural networks development
Autorzy:
Boyko, N.
Pobereyko, P.
Powiązania:
https://bibliotekanauki.pl/articles/410971.pdf
Data publikacji:
2016
Wydawca:
Polska Akademia Nauk. Oddział w Lublinie PAN
Tematy:
recurrent neural network
dynamic system
learning algorithms
reservoir computing
unsteady dynamics
Opis:
In this work formulated relevance, set out an analytical review of existing approaches to the research recurrent neural networks (RNN) and defined precondition appearance a new direction in the field neuroinformatics – reservoir computing. Shows generalized classification neural network (NN) and briefly described main types dynamics and modes RNN. Described topology, structure and features of the model NN with different nonlinear functions and with possible areas of progress. Characterized and systematized wellknown learning methods RNN and conducted their classification by categories. Determined the place RNN with unsteady dynamics of other classes RNN. Deals with the main parameters and terminology, which used to describe models RNN. Briefly described practical implementation recurrent neural networks in different areas natural sciences and humanities, and outlines and systematized main deficiencies and the advantages of using different RNN. The systematization of known recurrent neural networks and methods of their study is performed and on this basis the generalized classification of neural networks was proposed.
Źródło:
ECONTECHMOD : An International Quarterly Journal on Economics of Technology and Modelling Processes; 2016, 5, 2; 63-68
2084-5715
Pojawia się w:
ECONTECHMOD : An International Quarterly Journal on Economics of Technology and Modelling Processes
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
An arma type pi-sigma artificial neural network for nonlinear time series forecasting
Autorzy:
Akdeniz, E.
Egrioglu, E.
Bas, E.
Yolcu, U.
Powiązania:
https://bibliotekanauki.pl/articles/91816.pdf
Data publikacji:
2018
Wydawca:
Społeczna Akademia Nauk w Łodzi. Polskie Towarzystwo Sieci Neuronowych
Tematy:
high order artificial neural networks
pi-sigma neural network, forecasting
recurrent neural network
particle swarm optimization (PSO)
Opis:
Real-life time series have complex and non-linear structures. Artificial Neural Networks have been frequently used in the literature to analyze non-linear time series. High order artificial neural networks, in view of other artificial neural network types, are more adaptable to the data because of their expandable model order. In this paper, a new recurrent architecture for Pi-Sigma artificial neural networks is proposed. A learning algorithm based on particle swarm optimization is also used as a tool for the training of the proposed neural network. The proposed new high order artificial neural network is applied to three real life time series data and also a simulation study is performed for Istanbul Stock Exchange data set.
Źródło:
Journal of Artificial Intelligence and Soft Computing Research; 2018, 8, 2; 121-132
2083-2567
2449-6499
Pojawia się w:
Journal of Artificial Intelligence and Soft Computing Research
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Forecasting economic and financial indicators by supply of deep and recovery neural networks
Autorzy:
Boyko, N.
Ivanets, A.
Bosik, M.
Powiązania:
https://bibliotekanauki.pl/articles/411261.pdf
Data publikacji:
2018
Wydawca:
Polska Akademia Nauk. Oddział w Lublinie PAN
Tematy:
neural network
deep
recurrent
activation function
feedforward
neuron
hidden layer
stock price prediction
Opis:
This paper studies the potential of the application of the Recurrent Neural Networks, as well as the Deep Neural Networks in the field of the finances and trading. In particular, their use in the stock price predicting software. The concepts of the RNNs and DNNs are provided and explained thoroughly. Both techniques RNNs and DNNs are utilized in the implementation of the stock price predicting software. Two separate versions of the software are created in order to demonstrate the main differences between the algorithms, as well as to determine the best of the two. Each version is thoroughly examined. The comparison of each of the algorithms is performed and highlighted. Examples of the implementations of the software, utilizing each of the algorithms on big volumes of stock data, for stock price prediction are provided. The article summarizes the concept of stock price prediction backed by the popular machine learning algorithms and its application in the nowadays world.
Źródło:
ECONTECHMOD : An International Quarterly Journal on Economics of Technology and Modelling Processes; 2018, 7, 2; 3-8
2084-5715
Pojawia się w:
ECONTECHMOD : An International Quarterly Journal on Economics of Technology and Modelling Processes
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Character-based recurrent neural networks for morphological relational reasoning
Autorzy:
Mogren, Olof
Johansson, Richard
Powiązania:
https://bibliotekanauki.pl/articles/103847.pdf
Data publikacji:
2019
Wydawca:
Polska Akademia Nauk. Instytut Podstaw Informatyki PAN
Tematy:
morphological analogies
morphological inflection
morphological reinflection
recurrent neural network
character-based modelling
Opis:
We present a model for predicting inflected word forms based on morphological analogies. Previous work includes rule-based algorithms that determine and copy affixes from one word to another, with limited support for varying inflectional patterns. In related tasks such as morphological reinflection, the algorithm is provided with an explicit enumeration of morphological features which may not be available in all cases. In contrast, our model is feature-free: instead of explicitly representing morphological features, the model is given a demo pair that implicitly specifies a morphological relation (such as write: writes specifying infinitive:present). Given this demo relation and a query word (e.g. watch), the model predicts the target word (e.g. watches). To address this task, we devise a character-based recurrent neural network architecture using three separate encoders and one decoder. Our experimental evaluation on five different languages shows that the exact form can be predicted with high accuracy, consistently beating the baseline methods. Particularly, for English the prediction accuracy is 94.85%. The solution is not limited to copying affixes from the demo relation, but generalizes to words with varying inflectional patterns, and can abstract away from the orthographic level to the level of morphological forms.
Źródło:
Journal of Language Modelling; 2019, 7, 1; 139-170
2299-856X
2299-8470
Pojawia się w:
Journal of Language Modelling
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Comparison of optimization algorithms of connectionist temporal classifier for speech recognition system
Porównanie algorytmów optymalizacji klasyfikatora czasowego do systemu rozpoznawania mowy
Autorzy:
Amirgaliyev, Yedilkhan
Darkhan, Kuanyshbay
Shoiynbek, Aisultan
Powiązania:
https://bibliotekanauki.pl/articles/408796.pdf
Data publikacji:
2019
Wydawca:
Politechnika Lubelska. Wydawnictwo Politechniki Lubelskiej
Tematy:
recurrent neural network
search method
acoustic
systems modeling language
rekurencyjna sieć neuronowa
metoda wyszukiwania
akustyka
język modelowania systemów
Opis:
This paper evaluates and compares the performances of three well-known optimization algorithms (Adagrad, Adam, Momentum) for faster training the neural network of CTC algorithm for speech recognition. For CTC algorithms recurrent neural network has been used, specifically Long- Short-Term memory. LSTM is effective and often used model. Data has been downloaded from VCTK corpus of Edinburgh University. The results of optimization algorithms have been evaluated by the Label error rate and CTC loss.
W artykule dokonano oceny i porównania wydajności trzech znanych algorytmów optymalizacyjnych (Adagrad, Adam, Momentum) w celu przyspieszenia treningu sieci neuronowej algorytmu CTC do rozpoznawania mowy. Dla algorytmów CTC wykorzystano rekurencyjną sieć neuronową, w szczególności LSTM, która jest efektywnym i często używanym modelem. Dane zostały pobrane z wydziału VCTK Uniwersytetu w Edynburgu. Wyniki algorytmów optymalizacyjnych zostały ocenione na podstawie wskaźników Label error i CTC loss.
Źródło:
Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska; 2019, 9, 3; 54-57
2083-0157
2391-6761
Pojawia się w:
Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies