Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "radial basis function (RBF)" wg kryterium: Wszystkie pola


Wyświetlanie 1-8 z 8
Tytuł:
Prediction of industrial pollution by radial basis function networks
Autorzy:
Djebbri, N.
Rouainia, M.
Powiązania:
https://bibliotekanauki.pl/articles/207579.pdf
Data publikacji:
2018
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
forecasting
RBF
artificial neural network
pollution
prognozowanie
sztuczna sieć neuronowa
zanieczyszczenie
Opis:
Atmospheric pollution has been receiving a significant interest for several decades since industries cause more and more pollution. Thanks to the development of many prediction techniques, scientists and industries are focusing more on pollution prediction. The aim of this work is to predict the two pollutant concentrations (NOx and CO) in industrial sites by a modified radial basis function (RBF) based neural network. The modification considered the spread parameter h of the activation function in the RBF network. In order to get the best network, the variations of this parameter for three cases were considered. In the first case, only pollutants concentrations variables were used, while in the second one, only the meteorological variables were utilized. In the third case, pollutants' concentrations were connected with meteorological variables. Based on calculation errors, the best model that ensures the best monitoring of pollutants concentration could be identified.
Źródło:
Environment Protection Engineering; 2018, 44, 3; 153-164
0324-8828
Pojawia się w:
Environment Protection Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Comparison of MLP and RBF Neural Networks in the Task of Classifying the Diameters of Water Pipes
Autorzy:
Gvishiani, Zurab
Dawidowicz, Jacek
Powiązania:
https://bibliotekanauki.pl/articles/2174907.pdf
Data publikacji:
2022
Wydawca:
Politechnika Koszalińska. Wydawnictwo Uczelniane
Tematy:
water distribution system
hydraulic calculation
selection of diameter
water pipe
artificial neural network
radial basis function
multilayer perceptron
Opis:
Hydraulic calculations of water distribution systems are currently performed using computer programs. In addition to the basic calculation procedure, modules responsible for evaluating the obtained calculation results are introduced more and more often into the programs. This article presents the results of research on artificial neural networks with a radial base function (RBF) and a multilayer perceptron (MLP), aimed at determining whether they can be used to model the relationship between the variables describing the computational section of the water distribution system and the diameter of the water pipe. The classification capabilities of the RBF and MLP networks were analyzed according to the number of neurons in the hidden layer of the network. A comparative analysis of RBF networks with multilayer perceptron (MLP) networks was performed. The results showed that the MLP networks have much better classification properties and are better suited for the task of assessing the selected diameters of the water pipes.
Źródło:
Rocznik Ochrona Środowiska; 2022, 24; 505--519
1506-218X
Pojawia się w:
Rocznik Ochrona Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Lan interconnection unit based on an artificial neural network
Autorzy:
Jalab, Hamid A.
Powiązania:
https://bibliotekanauki.pl/articles/1955324.pdf
Data publikacji:
2006
Wydawca:
Politechnika Gdańska
Tematy:
LAN bridge
neural networks
radial basis function (RBF)
Opis:
This paper presents the design of an intelligent interconnection unit based on an artificial neural network (ANN), used when two local area networks (LAN) with different IEEE 802 standard protocols are connected. The proposed ANN is used to activate execution of suitable procedures bridging 802.X LAN and 802.Y LAN.
Źródło:
TASK Quarterly. Scientific Bulletin of Academic Computer Centre in Gdansk; 2006, 10, 3; 339-346
1428-6394
Pojawia się w:
TASK Quarterly. Scientific Bulletin of Academic Computer Centre in Gdansk
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Neural Network Model for Control of Operating Modes of Crushing and Grinding Complex
Autorzy:
Kalinchyk, Vasyl
Meita, Olexandr
Pobigaylo, Vitalii
Borychenko, Olena
Kalinchyk, Vitalii
Powiązania:
https://bibliotekanauki.pl/articles/2174915.pdf
Data publikacji:
2022
Wydawca:
Politechnika Koszalińska. Wydawnictwo Uczelniane
Tematy:
classification
modelling
neural network
radial basis function network
RBF
multilayer perceptron
MLP
Opis:
This article investigates the application of neural network models to create automated control systems for industrial processes. We reviewed and analysed works on dispatch control and evaluation of equipment operating modes and the use of artificial neural networks to solve problems of this type. It is shown that the main requirements for identification models are the accuracy of estimation and ease of algorithm implementation. It is shown that artificial neural networks meet the requirements for accuracy of classification problems, ease of execution and speed. We considered the structures of neural networks that can be used to recognise the modes of operation of technological equipment. Application of the model and structure of networks with radial basis functions and multilayer perceptrons for identifying the mode of operation of equipment under given conditions is substantiated. The input conditions for constructing neural network models of two types with a given three-layer structure are offered. The results of training neural models on the model of a multilayer perceptron and a network with radial basis functions are presented. The estimation and comparative analysis of models depending on model parameters are made. It is shown that networks with radial basis functions offer greater accuracy in solving identification problems. The structural scheme of the automated process control system with mode identification based on artificial neural networks is offered.
Źródło:
Rocznik Ochrona Środowiska; 2022, 24; 26--40
1506-218X
Pojawia się w:
Rocznik Ochrona Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Applying LCS to affective image classification in spatial - frequency domain
Autorzy:
Lee, P. -M.
Hsiao, T.-C.
Powiązania:
https://bibliotekanauki.pl/articles/91808.pdf
Data publikacji:
2014
Wydawca:
Społeczna Akademia Nauk w Łodzi. Polskie Towarzystwo Sieci Neuronowych
Tematy:
image classification
pattern recognition
Hilbert-Huang transform
HHT
empirical mode decomposition
EMD
Hilbert transform
HT
Extended Classifier Systems
XCSs
Area Under Curve
AUC
Radial-Basis Function Network
RBF Network
LCS
Opis:
Recent studies have utilizes color, texture, and composition information of images to achieve affective image classification. However, the features related to spatial-frequency domain that were proven to be useful for traditional pattern recognition have not been tested in this field yet. Furthermore, the experiments conducted by previous studies are not internationally-comparable due to the experimental paradigm adopted. In addition, contributed by recent advances in methodology, that are, Hilbert-Huang Transform (HHT) (i.e. Empirical Mode Decomposition (EMD) and Hilbert Transform (HT)), the resolution of frequency analysis has been improved. Hence, the goal of this research is to achieve the affective image-classification task by adopting a standard experimental paradigm introduces by psychologists in order to produce international-comparable and reproducible results; and also to explore the affective hidden patterns of images in the spatial-frequency domain. To accomplish these goals, multiple human-subject experiments were conducted in laboratory. Extended Classifier Systems (XCSs) was used for model building because the XCS has been applied to a wide range of classification tasks and proved to be competitive in pattern recognition. To exploit the information in the spatial-frequency domain, the traditional EMD has been extended to a two-dimensional version. To summarize, the model built by using the XCS achieves Area Under Curve (AUC) = 0.91 and accuracy rate over 86%. The result of the XCS was compared with other traditional machine-learning algorithms (e.g., Radial-Basis Function Network (RBF Network)) that are normally used for classification tasks. Contributed by proper selection of features for model building, user-independent findings were obtained. For example, it is found that the horizontal visual stimulations contribute more to the emotion elicitation than the vertical visual stimulation. The effect of hue, saturation, and brightness; is also presented.
Źródło:
Journal of Artificial Intelligence and Soft Computing Research; 2014, 4, 2; 99-123
2083-2567
2449-6499
Pojawia się w:
Journal of Artificial Intelligence and Soft Computing Research
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Comparative Application of Radial Basis Function and Multilayer Perceptron Neural Networks to Predict Traffic Noise Pollution in Tehran Roads
Autorzy:
Mansourkhaki, A.
Berangi, M.
Haghiri, M.
Powiązania:
https://bibliotekanauki.pl/articles/124655.pdf
Data publikacji:
2018
Wydawca:
Polskie Towarzystwo Inżynierii Ekologicznej
Tematy:
MLP
RBF
neural network
noise prediction
road traffic noise
Opis:
Noise pollution is a level of environmental noise which is considered as a disturbing and annoying phenomenon for human and wildlife. It is one of the environmental problems which has not been considered as harmful as the air and water pollution. Compared with other pollutants, the attempts to control noise pollution have largely been unsuccessful due to the inadequate knowledge of its effects on humans, as well as the lack of clear standards in previous years. However, with an increase of traveling vehicles, the adverse impact of increasing noise pollution on human health is progressively emerging. Hence, investigators all around the world are seeking to find new approaches for predicting, estimating and controlling this problem and various models have been proposed. Recently, developing learning algorithms such as neural network has led to novel solutions for this challenge. These algorithms provide intelligent performance based on the situations and input data, enabling to obtain the best result for predicting noise level. In this study, two types of neural networks – multilayer perceptron and radial basis function – were developed for predicting equivalent continuous sound level (LAeq) by measuring the traffic volume, average speed and percentage of heavy vehicles in some roads in west and northwest of Tehran. Then, their prediction results were compared based on the coefficient of determination (R2) and the Mean Squared Error (MSE). Although both networks are of high accuracy in prediction of noise level, multilayer perceptron neural network based on selected criteria had a better performance.
Źródło:
Journal of Ecological Engineering; 2018, 19, 1; 113-121
2299-8993
Pojawia się w:
Journal of Ecological Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Neuro-adaptive cooperative control for high-order nonlinear multi-agent systems with uncertainties
Autorzy:
Peng, Cheng
Zhang, Anguo
Li, Junyu
Powiązania:
https://bibliotekanauki.pl/articles/2055174.pdf
Data publikacji:
2021
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
multiagent system
radial basis function
RBF neural network
sliding mode control
cooperative control
system wieloagentowy
radialna funkcja bazowa
sieć neuronowa RBF
sterowanie ślizgowe
Opis:
The consensus problem for a class of high-order nonlinear multi-agent systems (MASs) with external disturbance and system uncertainty is studied. We design an online-update radial basis function (RBF) neural network based distributed adaptive control protocol, where the sliding model control method is also applied to eliminate the influence of the external disturbance and system uncertainty. System consensus is verified by using the Lyapunov stability theorem, and sufficient conditions for cooperative uniform ultimately boundedness (CUUB) are also derived. Two simulation examples demonstrate the effectiveness of the proposed method for both homogeneous and heterogeneous MASs.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2021, 31, 4; 635--645
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Training RBF NN Using Sine-Cosine Algorithm for Sonar Target Classification
Autorzy:
Wang, Yixuan
Yuan, LiPing
Khishe, Mohammad
Moridi, Alaveh
Mohammadzade, Fallah
Powiązania:
https://bibliotekanauki.pl/articles/1953523.pdf
Data publikacji:
2020
Wydawca:
Polska Akademia Nauk. Czasopisma i Monografie PAN
Tematy:
classifiers
radial basis function neural network
sine-cosine algorithm
sonar
Opis:
Radial basis function neural networks (RBF NNs) are one of the most useful tools in the classification of the sonar targets. Despite many abilities of RBF NNs, low accuracy in classification, entrapment in local minima, and slow convergence rate are disadvantages of these networks. In order to overcome these issues, the sine-cosine algorithm (SCA) has been used to train RBF NNs in this work. To evaluate the designed classifier, two benchmark underwater sonar classification problems were used. Also, an experimental underwater target classification was developed to practically evaluate the merits of the RBF-based classifier in dealing with high-dimensional real world problems. In order to have a comprehensive evaluation, the classifier is compared with the gradient descent (GD), gravitational search algorithm (GSA), genetic algorithm (GA), and Kalman filter (KF) algorithms in terms of entrapment in local minima, the accuracy of the classification, and the convergence rate. The results show that the proposed classifier provides a better performance than other compared classifiers as it classifies the sonar datasets 2.72% better than the best benchmark classifier, on average.
Źródło:
Archives of Acoustics; 2020, 45, 4; 753-764
0137-5075
Pojawia się w:
Archives of Acoustics
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-8 z 8

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies