Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "neural network (NN)" wg kryterium: Wszystkie pola


Wyświetlanie 1-5 z 5
Tytuł:
Void fraction and flow regime determination by means of MCNP code and neural network
Autorzy:
Rabiei, A.
Shamsaei, M.
Kafaee, M.
Shafaei, M.
Mahdavi, N.
Powiązania:
https://bibliotekanauki.pl/articles/146656.pdf
Data publikacji:
2012
Wydawca:
Instytut Chemii i Techniki Jądrowej
Tematy:
flow regime
gamma-ray densitometry
neural network (NN)
Monte Carlo N-particle (MCNP)
void fraction
Opis:
One of the non-intrusive and accurate methods of measuring void fraction in two-phase gas liquid pipe flows is the use of the gamma-transmission void fraction measurement technique. The goal of this study is to describe low-energy gamma-ray densitometry using an 241Am source for the determination of void fraction and flow regime in water/gas pipes. The MCNP code was utilized to simulate electron and photon transport through materials with various geometries. Then, a neural network was used to convert multi-beam gamma-ray spectra into a classification of the flow regime and void fraction. The simulations cover the full range of void fraction with Bubbly, Annular and Droplet flows. By using simulation data as input to the neural networks, the void fraction was determined with an error less than 3% regardless of the flow regime. It has thus been shown that multi-beam gamma-ray densitometers with a detector response examined by neural networks can analyze a two-phase flow with high accuracy.
Źródło:
Nukleonika; 2012, 57, 3; 345-349
0029-5922
1508-5791
Pojawia się w:
Nukleonika
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Neural network based selection of optimal tool - path in free form surface machining
Autorzy:
Korosec, M.
Kopaz, J.
Powiązania:
https://bibliotekanauki.pl/articles/384505.pdf
Data publikacji:
2007
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Automatyki i Pomiarów
Tematy:
(NN) Neural Network
CAD/CAM system
CAPP
Intelligent CAM (ICAM)
milling strategy
Opis:
The purpose of the presented paper is to show how with the help of artificial Neural Network (NN) the prediction of milling tool-path strategies could be performed in order to determine which milling tool - path strategies or their sequences will yield the best results (i.e. the most appropriate ones) of free form surface machining, in accordance with a selected technological aim. Usually, the machining task could be completed successfully using different tool-path strategies or their sequences. They can all perform the machining task according to the demands but always only one of the all possible applied strategies is optimal in terms of the desired technological goal (surface quality in most cases). In the presented paper, the best possible surface quality of a machined surface was taken as the primary technological aim. Configuration of the applied Neural Network is presented and the whole procedure of determining the optimal tool-path sequence is shown through an example of a light switch mould. Verification of the machined surface quality, in relation to the average mean roughness Ra is also being performed and compared with the NN predicted results.
Źródło:
Journal of Automation Mobile Robotics and Intelligent Systems; 2007, 1, 4; 41-50
1897-8649
2080-2145
Pojawia się w:
Journal of Automation Mobile Robotics and Intelligent Systems
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Multi-Layer Perceptron Neural Network Utilizing Adaptive Best-Mass Gravitational Search Algorithm to Classify Sonar Dataset
Autorzy:
Mosavi, Mohammad Reza
Khishe, Mohammad
Naseri, Mohammad Jafar
Parvizi, Gholam Reza
Ayat, Mehdi
Powiązania:
https://bibliotekanauki.pl/articles/176971.pdf
Data publikacji:
2019
Wydawca:
Polska Akademia Nauk. Czasopisma i Monografie PAN
Tematy:
MLP NN
Multi-Layer Perceptron Neural Network
ABGSA
Adaptive Best Mass Gravitational Search Algorithm
sonar
classification
Opis:
In this paper, a new Multi-Layer Perceptron Neural Network (MLP NN) classifier is proposed for classifying sonar targets and non-targets from the acoustic backscattered signals. Besides the capabilities of MLP NNs, it uses Back Propagation (BP) and Gradient Descent (GD) for training; therefore, MLP NNs face with not only impertinent classification accuracy but also getting stuck in local minima as well as lowconvergence speed. To lift defections, this study uses Adaptive Best Mass Gravitational Search Algorithm (ABGSA) to train MLP NN. This algorithm develops marginal disadvantage of the GSA using the bestcollected masses within iterations and expediting exploitation phase. To test the proposed classifier, this algorithm along with the GSA, GD, GA, PSO and compound method (PSOGSA) via three datasets in various dimensions will be assessed. Assessed metrics include convergence speed, fail probability in local minimum and classification accuracy. Finally, as a practical application assumed network classifies sonar dataset. This dataset consists of the backscattered echoes from six different objects: four targets and two non-targets. Results indicate that the new classifier proposes better output in terms of aforementioned criteria than whole proposed benchmarks.
Źródło:
Archives of Acoustics; 2019, 44, 1; 137-151
0137-5075
Pojawia się w:
Archives of Acoustics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Note onset detection in musical signals via neural-network-based multi-ODF fusion
Autorzy:
Stasiak, B.
Mońko, J.
Niewiadomski, A.
Powiązania:
https://bibliotekanauki.pl/articles/330895.pdf
Data publikacji:
2016
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
note onset detection
onset detection function
multilayer perceptron
multi ODF fusion
NN-based fusion
początek detekcji
perceptron wielowarstwowy
sygnał muzyczny
Opis:
The problem of note onset detection in musical signals is considered. The proposed solution is based on known approaches in which an onset detection function is defined on the basis of spectral characteristics of audio data. In our approach, several onset detection functions are used simultaneously to form an input vector for a multi-layer non-linear perceptron, which learns to detect onsets in the training data. This is in contrast to standard methods based on thresholding the onset detection functions with a moving average or a moving median. Our approach is also different from most of the current machine-learning-based solutions in that we explicitly use the onset detection functions as an intermediate representation, which may therefore be easily replaced with a different one, e.g., to match the characteristics of a particular audio data source. The results obtained for a database containing annotated onsets for 17 different instruments and ensembles are compared with state-of-the-art solutions.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2016, 26, 1; 203-213
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Training RBF NN Using Sine-Cosine Algorithm for Sonar Target Classification
Autorzy:
Wang, Yixuan
Yuan, LiPing
Khishe, Mohammad
Moridi, Alaveh
Mohammadzade, Fallah
Powiązania:
https://bibliotekanauki.pl/articles/1953523.pdf
Data publikacji:
2020
Wydawca:
Polska Akademia Nauk. Czasopisma i Monografie PAN
Tematy:
classifiers
radial basis function neural network
sine-cosine algorithm
sonar
Opis:
Radial basis function neural networks (RBF NNs) are one of the most useful tools in the classification of the sonar targets. Despite many abilities of RBF NNs, low accuracy in classification, entrapment in local minima, and slow convergence rate are disadvantages of these networks. In order to overcome these issues, the sine-cosine algorithm (SCA) has been used to train RBF NNs in this work. To evaluate the designed classifier, two benchmark underwater sonar classification problems were used. Also, an experimental underwater target classification was developed to practically evaluate the merits of the RBF-based classifier in dealing with high-dimensional real world problems. In order to have a comprehensive evaluation, the classifier is compared with the gradient descent (GD), gravitational search algorithm (GSA), genetic algorithm (GA), and Kalman filter (KF) algorithms in terms of entrapment in local minima, the accuracy of the classification, and the convergence rate. The results show that the proposed classifier provides a better performance than other compared classifiers as it classifies the sonar datasets 2.72% better than the best benchmark classifier, on average.
Źródło:
Archives of Acoustics; 2020, 45, 4; 753-764
0137-5075
Pojawia się w:
Archives of Acoustics
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-5 z 5

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies