Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "multidimensional scaling (MDS)" wg kryterium: Wszystkie pola


Wyświetlanie 1-8 z 8
Tytuł:
Multidimensional scaling (MDS): sustainability assessment model of community economic empowerment
Skalowanie wielowymiarowe (MDS):model oceny zrównoważonego rozwoju wspólnoty gospodarczej
Autorzy:
Fadilah, Sri
Rosidana, Yuni
Maemunah, Mey
Hernawati, Nopi
Sukarmanto, Edi
Hartanto, Rudy
Powiązania:
https://bibliotekanauki.pl/articles/27315216.pdf
Data publikacji:
2021
Wydawca:
Politechnika Częstochowska
Tematy:
community
economic empowerment
multidimensional scaling
społeczność
wzmocnienie pozycji gospodarczej
skalowanie wielowymiarowe
Opis:
The purpose of this research is to determine a sustainability assessment model of community economic empowerment program using Multidimensional Scaling (MDS). Multidimensional scaling is a multivariate statistical analysis used as a variable to determine the position of the object based on the similarity/dissimilarity. The research method used is descriptive research. Data collection techniques used are observation questionnaires, depth interview; and documentation. The population of this research are 573 beneficiaries of zakat and 236 samples (Slovin formula). Respondents are members of the BAZNAS (Badan Amil Zakat Nasional) business group in West Java Province. The results show that all Zakat Community Development’s (ZCD) have sufficient sustainability values from an economic perspective. The Squared Correlation (RSQ) value is 91.85 percent, and therefore, it suggests that the results of the Multidimensional Scaling analysis on the Zakat Community Development from an economic perspective can be explained as very good. The factor of income level becomes a decisive factor that is the most influential in the increase of economic sustainability.
Celem tego badania jest określenie modelu oceny zrównoważenia programu wzmocnienia ekonomicznego społeczności przy użyciu skalowania wielowymiarowego (MDS). Skalowanie wielowymiarowe to wielowymiarowa analiza statystyczna wykorzystywana jako zmienna do określenia położenia obiektu na podstawie podobieństwa/niepodobieństwa. Zastosowaną metodą badawczą są badania opisowe. Stosowane techniki zbierania danych to kwestionariusze obserwacyjne, wywiad pogłębiony; i dokumentacja. Populacja tego badania to 573 beneficjentów zakatu i 236 próbek (formuła Slovina). Respondenci są członkami grupy biznesowej BAZNAS (Badan Amil Zakat Nasional) w prowincji Jawa Zachodnia. Wyniki pokazują, że wszystkie projekty Zakat Community Development (ZCD) mają wystarczające wartości zrównoważenia w perspektywie ekonomicznej. Wartość korelacji kwadratów (RSQ) wynosi 91,85 procent, a zatem sugeruje, że wyniki analizy wielowymiarowego skalowania rozwoju społeczności Zakat w perspektywie ekonomicznej można uznać za bardzo dobre. Czynnik poziomu dochodów staje się decydującym czynnikiem, który ma największy wpływ na wzrost zrównoważenia gospodarczego.
Źródło:
Polish Journal of Management Studies; 2021, 24, 2; 119--135
2081-7452
Pojawia się w:
Polish Journal of Management Studies
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Polish universities of economics in European networks
Polskie uniwersytety ekonomiczne w sieciach europejskich
Autorzy:
Sagan, Adam
Brzezińska, Justyna
Sztemberg-Lewandowska, Mirosława
Pełka, Marcin
Powiązania:
https://bibliotekanauki.pl/articles/1182031.pdf
Data publikacji:
2021
Wydawca:
Wydawnictwo Uniwersytetu Ekonomicznego we Wrocławiu
Tematy:
principal component analysis (PCA)
multidimensional scaling (MDS)
network analysis
European universities
analiza czynnikowa (PCA)
skalowanie wielowymiarowe (MDS)
analiza sieci
uniwersytety ekonomiczne
Opis:
Ostatnio dużym problemem stała się ocena badań prowadzonych na europejskich uczelniach. Troska o jakość i ocenę badań naukowych prowadzonych na uczelniach zwiększa znaczenie rankingów uczelni, zwłaszcza rankingów światowych. W artykule zastosowano podejście sieciowe do analizy powiązań europejskich uniwersytetów korzystających z sieci uniwersytetów. Sieci umożliwiają wizualizację złożonych, wielowymiarowych danych i zapewniają wskaźniki statystyczne do interpretacji wynikowych wykresów. Analiza obejmuje 150 uczelni ekonomicznych w Europie i 11 sieci uniwersytetów. Analizy sieciowe wykonano programem R. W artykule przedstawiono różne metody, które pozwoliły na identyfikację systemów sieciowych polskich uczelni ekonomicznych na uczelniach europejskich, oraz sieci społecznościowych na podstawie wskaźników sieciowych.
Źródło:
Econometrics. Ekonometria. Advances in Applied Data Analytics; 2021, 25, 1; 91-111
1507-3866
Pojawia się w:
Econometrics. Ekonometria. Advances in Applied Data Analytics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Music Mood Visualization Using Self-Organizing Maps
Autorzy:
Plewa, M.
Kostek, B.
Powiązania:
https://bibliotekanauki.pl/articles/176410.pdf
Data publikacji:
2015
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
music mood
music parameterization
MER (Music Emotion Recognition)
MIR (Music Information Retrieval)
Multidimensional Scaling (MDS)
principal component analysis (PCA)
Self-Organizing Maps (SOM)
ANN (Artificial Neural Networks)
Opis:
Due to an increasing amount of music being made available in digital form in the Internet, an automatic organization of music is sought. The paper presents an approach to graphical representation of mood of songs based on Self-Organizing Maps. Parameters describing mood of music are proposed and calculated and then analyzed employing correlation with mood dimensions based on the Multidimensional Scaling. A map is created in which music excerpts with similar mood are organized next to each other on the two-dimensional display.
Źródło:
Archives of Acoustics; 2015, 40, 4; 513-525
0137-5075
Pojawia się w:
Archives of Acoustics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Perceptually Correlated Parameters of Musical Instrument Tones
Autorzy:
Beauchamp, J. W.
Powiązania:
https://bibliotekanauki.pl/articles/177352.pdf
Data publikacji:
2011
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
musical timbre
music synthesis
loudness
pitch
duration
attack
decay
spectral envelope
spectral centroid
spectral irregularity
spectral flux
vibrato
inharmonicity
discrimination
dissimilarity relation
multidimensional scaling (MDS)
timbre transposition
rms amplitude
fundamental frequency
correspondence
Opis:
In Western music culture instruments have been developed according to unique instrument acoustical features based on types of excitation, resonance, and radiation. These include the woodwind, brass, bowed and plucked string, and percussion families of instruments. On the other hand, instrument performance depends on musical training, and music listening depends on perception of instrument output. Since musical signals are easier to understand in the frequency domain than the time domain, much effort has been made to perform spectral analysis and extract salient parameters, such as spectral centroids, in order to create simplified synthesis models for musical instrument sound synthesis. Moreover, perceptual tests have been made to determine the relative importance of various parameters, such as spectral centroid variation, spectral incoherence, and spectral irregularity. It turns out that the importance of particular parameters depends on both their strengths within musical sounds as well as the robustness of their effect on perception. Methods that the author and his colleagues have used to explore timbre perception are: 1) discrimination of parameter reduction or elimination; 2) dissimilarity judgments together with multidimensional scaling; 3) informal listening to sound morphing examples. This paper discusses ramifications of this work for sound synthesis and timbre transposition.
Źródło:
Archives of Acoustics; 2011, 36, 2; 225-238
0137-5075
Pojawia się w:
Archives of Acoustics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Comparison of selected methods of multi-parameter data visualization used for classification of coals
Autorzy:
Jamroz, D.
Niedoba, T.
Powiązania:
https://bibliotekanauki.pl/articles/110329.pdf
Data publikacji:
2015
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
multidimensional visualization
observational tunnels method
multidimensional scaling
MDS
principal component analysis
PCA
relevance maps
autoassociative neural networks
Kohonen maps
parallel coordinates method
grained material
coal
Opis:
Methods of multi-parameter data visualization through the transformation of multidimensional space into two-dimensional one allow to present multidimensional data on computer screen, thus making it possible to conduct a qualitative analysis of this data in the most natural way for human – by a sense of sight. In the paper a comparison was made to show the efficiency of selected seven methods of multidimensional visualization and further, to analyze data describing various coal type samples. Each of the methods was verified by checking how precisely a coal type can be classified when a given method is applied. For this purpose, a special criterion was designed to allow an evaluation of the results obtained by means of each of these methods. Detailed information included presentation of methods, elaborated algorithms, accepted parameters for best results as well the results. The framework for the comparison of the analyzed multi-parameter visualization methods includes: observational tunnels method multidimensional scaling MDS, principal component analysis PCA, relevance maps, autoassociative neural networks, Kohonen maps and parallel coordinates method.
Źródło:
Physicochemical Problems of Mineral Processing; 2015, 51, 2; 769-784
1643-1049
2084-4735
Pojawia się w:
Physicochemical Problems of Mineral Processing
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Application of multidimensional scaling to classification of various types of coal
Zastosowanie skalowania wielowymiarowego do klasyfikacji różnych typów węgli
Autorzy:
Jamróz, D.
Powiązania:
https://bibliotekanauki.pl/articles/219176.pdf
Data publikacji:
2014
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
skalowanie wielowymiarowe
MDS
wizualizacja danych wielowymiarowych
węgiel
identyfikacja danych
statystyczne metody graficzne
rozpoznawanie obrazów
multidimensional scaling
multidimensional data visualization
coal
identification of data
statistical graphics methods
pattern recognition
Opis:
Visualization of multidimensional data is a new way of statistical analysis of so-called statistical graphical methods. These methods allow to classify some analyzed objects, including their various features. Facing grained materials problems, like coal or ores many characteristics have an influence on the quality of product. In case of coal, many features must be taken into consideration to determine quality of the material. Apart from most obvious characteristics like particle size, particle density or ash contents there are many others which cause significant differences between considered types of material. In the paper the application of Multidimensional Scaling Method is presented which is one of the multidimensional data visualization techniques. To this purpose, sampling of three types of coal was performed, which were 31, 34.2 and 35 (according to Polish classification of coal types). First, the material was screened on sieves and then divided into density fractions. Next step was to analyze chemically the obtained particle and size fractions of researched coal. Then, the Multidimensional Scaling Method was applied to visualize the investigated set of data. It was proved that the applied methodology allows to identify certain coal types efficiently and can be used as a qualitative criterion for grained materials. However, it was impossible to achieve such identification comparing all three types of coal together. The Multidimensional Scaling Method is new technique of data analysis concerning widely understood mineral processing.
Surowce mineralne, które podlegają wzbogacaniu w celu ich lepszego wykorzystania mogą być charakteryzowane wieloma wskaźnikami opisującymi ich, interesujące przeróbkarza, cechy. Podstawowymi cechami są wielkość ziaren oraz ich gęstość, które decydują o przebiegu rozdziału zbiorów ziaren (nadaw) i efektach takiego rozdziału. Rozdział prowadzi się z reguły, w celu uzyskania produktów o zróżnicowanych wartościach średnich wybranej cechy, która zwykle charakteryzowana jest zawartością określonego składnika surowca wyznaczoną na drodze analiz chemicznych. Takie podejście do surowca mineralnego prowadzi do potraktowania go jako wielowymiarowego wektora X = [X1, …, Xn]. Zasadniczym problemem jest także wybór jednostki populacji generalnej (ziarno, jednostka objętości lub masy), co może decydować o określeniu charakteru wielowymiarowych powiązań cech wektora X. Takimi kierunkami charakteryzowania mogą być wielowymiarowe rozkłady wektora losowego X wraz ze wszystkimi konsekwencjami metody (Lyman, 1993; Niedoba, 2009; 2011; Olejnik et al., 2010; Niedoba i Surowiak, 2012), wielowymiarowe równania regresji wraz z analizą macierzy współczynników korelacji liniowej oraz korelacji cząstkowej (Niedoba, 2013c), analiza czynnikowa (Tumidajski i Saramak, 2009), czy metody wielowymiarowej wizualizacji danych, będące tematem niniejszego artykułu. Biorąc pod uwagę analizę korelacji pomiędzy badanymi cechami materiałów uziarnionych (węgli) można zidentyfikować jakie jego cechy są ze sobą istotnie powiązane. Jest to swoiste preludium do wytypowania, które cechy węgla powodują istotne różnice pomiędzy jego typami. W artykule poddano badaniu trzy typy węgla, według polskiej klasyfikacji - węgle 31, 34.2 oraz 35, pochodzące z trzech różnych kopalni Górnośląskiego Okręgu Przemysłowego. Można powiedzieć, że z punktu widzenia ich jakości były to węgle energetyczne, semi-koksujące oraz koksujące. Każdy z tych węgli został poddany podziałowi na klasy ziarnowe, przy zastosowaniu odpowiedniego zestawu sit. Następnie każdą z otrzymanych klas ziarnowych rozdzielono w cieczach ciężkich na frakcje densymetryczne. Tak otrzymane klaso-frakcje zostały dodatkowo poddane analizie chemicznej ze względu na szereg cech, tj. ciepło spalania, zawartość siarki, zawartość substancji lotnych, zawartość popiołu, miąższość. Wyniki analiz dla wybranej klasy ziarnowej przedstawiono w tabeli 1. Tym samym otrzymano siedmiowymiarowy zestaw danych, który postanowiono poddać wielowymiarowej wizualizacji za pomocą metody skalowania wielowymiarowego. Metoda skalowania wielowymiarowego (multidimensional scaling, MDS) jest jedną z nowoczesnych metod wizualizacji danych. Tego typu metody są wskazane zwłaszcza w sytuacji gdy ma się do czynienia z zestawem skomplikowanych i złożonych danych. Skalowanie wielowymiarowe jest odwzorowaniem przestrzeni n-wymiarowej w przestrzeń m-wymiarową. Oparte jest na obliczaniu odległości pomiędzy każdą parą n-wymiarowych punktów. Na podstawie tych odległości rozważana metoda ustala wzajemne położenie obrazów tych punktów w docelowej przestrzeni m-wymiarowej. Niech dij oznacza odległość pomiędzy n-wymiarowymi punktami nr i oraz j. Skalowanie wielowymiarowe polega na takim rozmieszczeniu punktów w przestrzeni m-wymiarowej, by odległość Dij liczona w tej przestrzeni pomiędzy odwzorowanymi punktami nr i oraz j była jak najbardziej zbliżona do dij. Rozdział 4 zawiera wyniki eksperymentów. Na rysunkach 1-4 widać, w jaki sposób wzrasta grupowanie punktów reprezentujących trzy różne klasy węgla (31, 34.2 oraz 35) wraz ze wzrostem parametru ITER. Widać, że punkty będące obrazami danych reprezentujących te same klasy węgla zaczynają zajmować osobne podobszary oraz zaczynają się grupować. Czytelność podziału przestrzeni rośnie wraz ze zwiększeniem parametru ITER, więc wraz z dokładniejszym dopasowaniem odległości obrazów punktów Dij w przestrzeni 2-wymiarowej do oryginalnych odległości dij pomiędzy punktami w przestrzeni n-wymiarowej. Na rysunku 4 pokazano najbardziej czytelny wynik, jaki udało się uzyskać dla danych zawierających trzy typy węgla 31, 34.2 oraz 35. Nastąpiło to przy parametrze ITER = 793. Widać wyraźnie, że obrazy punktów danych reprezentujących próbki węgla danego typu gromadzą się w skupiskach. Można zaobserwować, że na prawie całym obszarze rysunku, skupiska te można od siebie odseparować. Jednak w niektórych częściach przestrzeni obrazy punktów reprezentujących różne klasy węgla zachodzą na siebie. Przez to nie możemy na podstawie tego rysunku stwierdzić, że analizowane dane pozwalają na prawidłową klasyfikację typów węgla. Postanowiono więc przeanalizować dane reprezentujące różne typy węgla parami. Na rysunkach 5-7 przedstawiono parami węgle typu, odpowiednio, 34.2 i 35 (Rys. 5), 31 i 34.2 (Rys. 6) oraz 31 i 35 (Rys. 7). Na każdym z tych rysunków widać czytelnie, że obrazy punktów reprezentujących próbki różnych typów węgla gromadzą się w skupiskach, które łatwo można od siebie odseparować. Przeprowadzona wizualizacja wielowymiarowa przy użyciu skalowania wielowymiarowego pozwala więc stwierdzić, że informacje zawarte w analizowanych siedmiowymiarowych danych są wystarczające do prawidłowej klasyfikacji typów węgla 31, 34.2 oraz 35.
Źródło:
Archives of Mining Sciences; 2014, 59, 2; 413-425
0860-7001
Pojawia się w:
Archives of Mining Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Application of multi-parameter data visualization by means of multidimensional scaling to evaluate possibility of coal gasification
Wykorzystanie wizualizacji wielowymiarowych danych przy użyciu skalowania wielowymiarowego do oceny możliwości zgazowania węgla
Autorzy:
Jamróz, D.
Niedoba, T.
Surowiak, A.
Tumidajski, T.
Szostek, R.
Gajer, M.
Powiązania:
https://bibliotekanauki.pl/articles/219920.pdf
Data publikacji:
2017
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
zgazowanie węgla
wizualizacja wielowymiarowa
skalowanie wielowymiarowe
MDS
wielowymiarowe dane
wzbogacanie w osadzarkach
coal gasification
multidimensional visualization
multidimensional scaling
multidimensional data
Opis:
The application of methods drawing upon multi-parameter visualization of data by transformation of multidimensional space into two-dimensional one allow to show multi-parameter data on computer screen. Thanks to that, it is possible to conduct a qualitative analysis of this data in the most natural way for human being, i.e. by the sense of sight. An example of such method of multi-parameter visualization is multidimensional scaling. This method was used in this paper to present and analyze a set of seven-dimensional data obtained from Janina Mining Plant and Wieczorek Coal Mine. It was decided to examine whether the method of multi-parameter data visualization allows to divide the samples space into areas of various applicability to fluidal gasification process. The “Technological applicability card for coals” was used for this purpose [Sobolewski et al., 2012; 2013], in which the key parameters, important and additional ones affecting the gasification process were described.
Metody służące do wizualizacji złożonych, wielowymiarowych danych poprzez transformację przestrzeni wielowymiarowej do dwuwymiarowej umożliwiają prezentację tych danych na ekranie komputera. Tym samym są przystępnym instrumentem analizy zbiorów danych, pozwalającym wykorzystać połączenie naszego wzroku z mocą naszej osobistej sieci neuronowej (mózgu) do wyodrębnienia z danych cech, których zauważenie przy pomocy innych metod może być bardzo trudne. W artykule zastosowano jedną z takich metod – skalowanie wielowymiarowe – w celu sprawdzenia, skuteczności tej metody do analizy próbek węgla ze względu na jego przydatność do procesu zgazowania w kotle fluidalnym. W tym celu pobrano próbki dwóch węgli, z KWK „Wieczorek” (węgiel typu 32) oraz ZG „Janina” (węgiel typu 31.2), które następnie miały być poddane testom pod względem ich przydatności do zgazowania. Każda z próbek została zbadana ze względu na cechy, których określone poziomy są kluczowe oraz wskazane w kontekście procesu zgazowania według „Karty przydatności węgli do zgazowania” (Sobolewski et al., 2012; 2013). Każdy z węgli został rozdzielony na osadzarce pierścieniowej (10 pierścieni, uziarnienie węgla 0-18 mm) w wyniku czego powstało pięć warstw (po 2 pierścienie każda). Następnie każda z warstw została rozsiana na 10 klas ziarnowych. Tak otrzymane produkty zostały poddane technicznej oraz chemicznej analizie (ogółem 50 próbek z ZG „Janina” oraz 49 próbek z KWK „Wieczorek” – klasa ziarnowa 16-18 mm w tej drugiej kopalni nie została uzyskana i pomiar był niemożliwy do zrealizowania. Tym samym otrzymano takie parametry do analizy jak: zawartość siarki, zawartość wodoru, zawartość azotu, zawartość chloru, zawartość węgla organicznego, ciepło spalania oraz zawartość popiołu. W wyniku przeprowadzonych badań oraz porównania ich z wymogami prezentowanymi w „Karcie przydatności węgli do zgazowania” okazało się, że tylko 18 próbek spełnia wszystkie wymogi, z czego aż 17 pochodziło z KWK „Wieczorek”. Postanowiono poddać ocenie wszystkie próbki bardziej złożonej obserwacji – wielowymiarowej analizie danych za pomocą skalowania wielowymiarowego. W rozdziale 3 przedstawiono szczegółowo zastosowaną metodologię analizy wraz z opisem algorytmu. Następnie, w rozdziale 4 przedstawiono wyniki obserwacji przeprowadzonych za pomocą opracowanego w tym celu programu komputerowego, napisanego w języku C++. Rysunki 1-3 przedstawiają sytuację, gdzie dane reprezentujące próbki węgla mniej lub bardziej przydatne do zgazowania zaczynają tworzyć podgrupy. Proces grupowania został przedstawiony etapowo, tzn. rys. 1 prezentuje sytuację wyjściową, Rys. 2 sytuację przy bardzo małej wartości parametru ITER = 5, zaś Rys. 3 najlepszy możliwy widok, otrzymany przy wartości parametru ITER = 340. Widać na tym rysunku, że obrazy punktów reprezentujących próbki węgla bardziej oraz mniej podatnego na zgazowanie zajmują osobne podobszary. Widać, że na całym obszarze rysunku, podobszary te można łatwo od siebie odseparować. Przez to możemy na podstawie tego rysunku stwierdzić, że skalowanie wielowymiarowe pozwala podzielić przestrzeń próbek na obszary o różnej przydatności do procesu zgazowania fluidalnego. Dzięki temu analizując następne, nieznane próbki możemy poprzez ich wizualizację zakwalifikować je do grupy bardziej podatnych na zgazowanie lub mniej podatnych na zgazowanie. Ważne jest to szczególnie dlatego, ponieważ w analizowanej sytuacji próbki węgla bardziej podatnego na zgazowanie zajmują wnętrze siedmiowymiarowego prostopadłościanu – co jest znacznym uproszczeniem. Wynika to bezpośrednio z faktu, iż przyjęte warunki określające przynależność do tej grupy („Karta przydatności Technologicznej węgla”) to proste nierówności przy pomocy których łatwo można sprawdzić taką przynależność. W rzeczywistości, może się jednak okazać, że obszar przynależności może mieć znacznie bardziej skomplikowany kształt. Wtedy na podstawie większej ilości próbek, których przynależność do klasy węgla bardziej podatnego na zgazowanie zostanie stwierdzona empirycznie, można będzie próbować przy pomocy skalowania wielowymiarowego uzyskać podział przestrzeni na obszary reprezentujące próbki węgla bardziej oraz mniej podatnego na zgazowanie. Rys. 4 przedstawia podobny podział, ale bez wzięcia pod uwagę parametru „zawartość chloru”. Również i w tym przypadku próbki węgla mniej lub bardziej podatnego na zgazowanie tworzą wyraźne podgrupy. Przy pominięciu parametru „zawartość chloru” już 78 próbek (37 z ZG „Janina” oraz 41 z KWK „Wieczorek”) z analizowanych 99-ciu spełniałoby wymogi zawarte w „Karcie przydatności węgla do zgazowania”. Rys. 5 przedstawia inne podejście do analizowanych próbek węgla. Tym razem za kryterium podziału przyjęto pochodzenie węgla z KWK „Wieczorek” lub ZG „Janina”, bez rozpatrywania ich w kontekście przydatności do zgazowania. Również i tym razem okazało się, że zastosowana metodologia pozwala stwierdzić możliwość efektywnego rozdzielenia, a tym samym prawidłowego rozpoznania analizowanych próbek węgla. Tym samym dowiedziono, że metoda skalowania wielowymiarowego może być bardzo przydatnym narzędziem podczas wieloparametrycznej analizy próbek różnego typu węgli.
Źródło:
Archives of Mining Sciences; 2017, 62, 3; 445-457
0860-7001
Pojawia się w:
Archives of Mining Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Understanding Expectancy-Value Theory’s Cost Construct via Multidimensional Scaling
Autorzy:
Conway, Gail D.
Abellera, Nadine Angeli C.
Ouano, Jerome A.
Powiązania:
https://bibliotekanauki.pl/articles/2140573.pdf
Data publikacji:
2022-09-30
Wydawca:
Wydawnictwo Adam Marszałek
Tematy:
expectancy-value theory
task value
MDS
cost
Opis:
This study explored educational cost using a multidimensional scaling approach. Undergraduates rated how similar 11 items on task value and cost were with one another. Results show that cost has two dimensions, each consisting of two clusters. In one dimension, cost is separated from task value components; in the other, cost is clustered with task value components. Findings imply nuances of cost in the context of goal theory, motivation, and emotion.
Źródło:
The New Educational Review; 2022, 69; 119-129
1732-6729
Pojawia się w:
The New Educational Review
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-8 z 8

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies