Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "learning classifier systems" wg kryterium: Wszystkie pola


Wyświetlanie 1-6 z 6
Tytuł:
Dynamic Neural Networks for Process Modelling in Fault Detection and Isolation Systems
Autorzy:
Korbicz, J.
Patan, K.
Obuchowicz, A.
Powiązania:
https://bibliotekanauki.pl/articles/908291.pdf
Data publikacji:
1999
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
wykrywanie błędu
sieć neuronowa dynamiczna
modelowanie nieliniowe
algorytm inteligentny
fault detection
dynamic neural networks
non-linear modelling
learning algorithms
FL-classifier
two-tank system
Opis:
A fault diagnosis scheme for unknown nonlinear dynamic systems with modules of residual generation and residual evaluation is considered. Main emphasis is placed upon designing a bank of neural networks with dynamic neurons that model a system diagnosed at normal and faulty operating points.To improve the quality of neural modelling, two optimization problems are included in the construction of such dynamic networks: searching for an optimal network architecture and the network training algorithm. To find a good solution, the effective well-known cascade-correlation algorithm is adapted here. The residuals generated by a bank of neural models are then evaluated by means of pattern classification. To illustrate the effectiveness of our approach, two applications are presented: a neural model of Narendra's system and a fault detection and identification system for the two-tank process.
Źródło:
International Journal of Applied Mathematics and Computer Science; 1999, 9, 3; 519-546
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
LCS Approach to Tasks Scheduling Problem in the Two Processor System
Autorzy:
Wasielewska, K.
Seredyński, F.
Powiązania:
https://bibliotekanauki.pl/articles/92950.pdf
Data publikacji:
2007
Wydawca:
Uniwersytet Przyrodniczo-Humanistyczny w Siedlcach
Tematy:
learning classifier systems
scheduling problem
evolutionary technique
Opis:
In this paper we propose an approach to solve multiprocessor scheduling problem with use of rule-based learning machine - Learning Classifier System (LCS). LCS combines reinforcement learning and evolutionary computing to produce adaptive systems. We interpret the multiprocessor scheduling problem as multi-step problem, where a feedback is given after some number steps. We show that LCS is able to solve scheduling tasks of a parallel program in the two processor system.
Źródło:
Studia Informatica : systems and information technology; 2007, 2(9); 29-39
1731-2264
Pojawia się w:
Studia Informatica : systems and information technology
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Real–valued GCS classifier system
Autorzy:
Cielecki, Ł.
Unold, O.
Powiązania:
https://bibliotekanauki.pl/articles/929825.pdf
Data publikacji:
2007
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
uczenie maszynowe
wnioskowanie gramatyczne
gramatyka bezkontekstowa
learning classifier systems
GCS
GAs
grammatical inference
context-free grammar
Opis:
Learning Classifier Systems (LCSs) have gained increasing interest in the genetic and evolutionary computation literature. Many real-world problems are not conveniently expressed using the ternary representation typically used by LCSs and for such problems an interval-based representation is preferable. A new model of LCSs is introduced to classify realvalued data. The approach applies the continous-valued context-free grammar-based system GCS. In order to handle data effectively, the terminal rules were replaced by the so-called environment probing rules. The rGCS model was tested on the checkerboard problem.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2007, 17, 4; 539-547
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Classification techniques for non-invasive recognition of liver fibrosis stage
Autorzy:
Krawczyk, B.
Woźniak, M.
Orczyk, T.
Porwik, P.
Musialik, J.
Błońska-Fajfrowska, B.
Powiązania:
https://bibliotekanauki.pl/articles/332969.pdf
Data publikacji:
2012
Wydawca:
Uniwersytet Śląski. Wydział Informatyki i Nauki o Materiałach. Instytut Informatyki. Zakład Systemów Komputerowych
Tematy:
uczenie maszynowe
systemy wielo-klasyfikatorów
informatyka medyczna
zwłóknienie wątroby
wirusowe zapalenie wątroby typu C
machine learning
multiple classifier systems
compound pattern recognition
medical informatics
liver fibrosis
hepatitis C
Opis:
Contemporary medicine should provide high quality diagnostic services while at the same time remaining as comfortable as possible for a patient. Therefore novel non-invasive disease recognition methods are becoming one of the key issues in the health services domain. Analysis of data from such examinations opens an interdisciplinary bridge between the medical research and artificial intelligence. The paper presents application of machine learning techniques to biomedical data coming from indirect examination method of the liver fibrosis stage. Presented approach is based on a common set of non-invasive blood test results. The performance of four different compound machine learning algorithms, namely Bagging, Boosting, Random Forest and Random Subspaces, is examined and grid search method is used to find the best setting of their parameters. Extensive experimental investigations, carried out on a dataset collected by authors, show that automatic methods achieve a satisfactory level of the fibrosis level recognition and may be used as a real-time medical decision support system for this task.
Źródło:
Journal of Medical Informatics & Technologies; 2012, 20; 121-127
1642-6037
Pojawia się w:
Journal of Medical Informatics & Technologies
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
On new methods of dynamic ensemble selection based on randomized reference classifier
Autorzy:
Krysmann, M.
Kurzyński, M.
Powiązania:
https://bibliotekanauki.pl/articles/332974.pdf
Data publikacji:
2012
Wydawca:
Uniwersytet Śląski. Wydział Informatyki i Nauki o Materiałach. Instytut Informatyki. Zakład Systemów Komputerowych
Tematy:
uczenie maszynowe
kompetencja klasyfikatora
systemy wielo-klasyfikatorów
machine learning
classifier competence
multiple classifier systems
dynamic competence threshold
Opis:
In the paper two dynamic ensemble selection (DES) systems are proposed. Both systems are based on a probabilistic model and utilize the concept of Randomized Reference Classifier (RRC) to determine the competence function of base classifiers. In the first system in the selection procedure of base classifiers the dynamic threshold of competence is applied. In the second DES system, selected classifiers are combined using weighted majority voting rule with continuous-valued outputs, where the weights are equal to the class-dependent competences. The performance of proposed MCSs were tested and compared against DES system with better-than-random selection rule using eleven databases taken from the UCI Machine Learning Repository. The experimental results clearly show the effectiveness of the proposed methods.
Źródło:
Journal of Medical Informatics & Technologies; 2012, 20; 101-107
1642-6037
Pojawia się w:
Journal of Medical Informatics & Technologies
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Orthopedic diagnostics with ensembles of learning systems
Autorzy:
Szarek, A.
Korytkowski, M.
Rutkowski, L.
Scherer, R.
Szyprowski, J.
Powiązania:
https://bibliotekanauki.pl/articles/99251.pdf
Data publikacji:
2012
Wydawca:
Politechnika Śląska. Katedra Biomechatroniki
Tematy:
hip joint
prosthesis
assessing orthopaedic data
classifier
staw biodrowy
proteza
ocena danych ortopedycznych
klasyfikator
Źródło:
Aktualne Problemy Biomechaniki; 2012, 6; 141-146
1898-763X
Pojawia się w:
Aktualne Problemy Biomechaniki
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-6 z 6

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies