Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "initial value problems" wg kryterium: Wszystkie pola


Tytuł:
A new numerical technique for solving fractional Bratu’s initial value problems in the Caputo and Caputo-Fabrizio sense
Autorzy:
Khalouta, Ali
Kadem, Abdelouahab
Powiązania:
https://bibliotekanauki.pl/articles/1839797.pdf
Data publikacji:
2020
Wydawca:
Politechnika Częstochowska. Wydawnictwo Politechniki Częstochowskiej
Tematy:
fractional Bratu’s initial value problem
Caputo fractional derivative
Caputo-Fabrizio fractional derivative
natural transform method
Adomian decomposition method
ułamkowa pochodna Caputo
ułamkowa pochodna Caputo-Fabrizio
metoda transformacji naturalnej
metoda dekompozycji Adomiana
Opis:
The purpose of this paper is to propose a new numerical technique called the natural decomposition method (NDM) for solving fractional Bratu’s initial value problems (FBIVP) in the Caputo and Caputo-Fabrizio sense. The NDM is a combined form of the natural transform method and the Adomian decomposition method. The numerical example is provided in order to validate the efficiency and reliability of the proposed method. The obtained results reveal that the proposed method is a very efficient and simple tool for solving fractional differential equations.
Źródło:
Journal of Applied Mathematics and Computational Mechanics; 2020, 19, 1; 43-56
2299-9965
Pojawia się w:
Journal of Applied Mathematics and Computational Mechanics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A new numerical technique for solving fractional Bratu’s initial value problems in the Caputo and Caputo-Fabrizio sense
Autorzy:
Khalouta, Ali
Kadem, Abdelouahab
Powiązania:
https://bibliotekanauki.pl/articles/122619.pdf
Data publikacji:
2020
Wydawca:
Politechnika Częstochowska. Wydawnictwo Politechniki Częstochowskiej
Tematy:
fractional Bratu’s initial value problem
Caputo fractional derivative
Caputo-Fabrizio fractional derivative
natural transform method
Adomian decomposition method
ułamkowa pochodna Caputo
ułamkowa pochodna Caputo-Fabrizio
metoda transformacji naturalnej
metoda dekompozycji Adomiana
Opis:
The purpose of this paper is to propose a new numerical technique called the natural decomposition method (NDM) for solving fractional Bratu’s initial value problems (FBIVP) in the Caputo and Caputo-Fabrizio sense. The NDM is a combined form of the natural transform method and the Adomian decomposition method. The numerical example is provided in order to validate the efficiency and reliability of the proposed method. The obtained results reveal that the proposed method is a very efficient and simple tool for solving fractional differential equations.
Źródło:
Journal of Applied Mathematics and Computational Mechanics; 2020, 19, 1; 43-56
2299-9965
Pojawia się w:
Journal of Applied Mathematics and Computational Mechanics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
An intial-value technique for self-adjoint singularly perturbed two-point boundary value problems
Autorzy:
Padmaja, P.
Aparna, P.
Gorla, R. S. R.
Powiązania:
https://bibliotekanauki.pl/articles/264933.pdf
Data publikacji:
2020
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
wartość początkowa
wartość brzegowa
perturbacja procesu
initial value technique
boundary value problem
singular perturbation problem
Opis:
In this paper, we present an initial value technique for solving self-adjoint singularly perturbed linearvboundary value problems. The original problem is reduced to its normal form and the reduced problem is converted to first order initial value problems. This replacement is significant from the computational point of view. The classical fourth order Runge-Kutta method is used to solve these initial value problems. This approach to solve singularly perturbed boundary-value problems is numerically very appealing. To demonstrate the applicability of this method, we have applied it on several linear examples with left-end boundary layer and rightend layer. From the numerical results, the method seems accurate and solutions to problems with extremely thin boundary layers are obtained.
Źródło:
International Journal of Applied Mechanics and Engineering; 2020, 25, 1; 106-126
1734-4492
2353-9003
Pojawia się w:
International Journal of Applied Mechanics and Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Laplace-Carson integral transform for exact solutions of non-integer order initial value problems with Caputo operator
Autorzy:
Kumar, Prem
Qureshi, Sania
Powiązania:
https://bibliotekanauki.pl/articles/122736.pdf
Data publikacji:
2020
Wydawca:
Politechnika Częstochowska. Wydawnictwo Politechniki Częstochowskiej
Tematy:
ordinary differential equations
Laplace transform
Riemann-Liouville integral
równanie różniczkowe zwyczajne
transformacja Laplace'a
całka Riemann-Liouville
Opis:
Finding the exact solution to dynamical systems in the field of mathematical modeling is extremely important and to achieve this goal, various integral transforms have been developed. In this research analysis, non-integer order ordinary differential equations are analytically solved via the Laplace-Carson integral transform technique, which is a technique that has not been previously employed to test the non-integer order differential systems. Firstly, it has proved that the Laplace-Carson transform for n-times repeated classical integrals can be computed by dividing the Laplace-Carson transform of the underlying function by n-th power of a real number p which later helped us to present a new result for getting the Laplace-Carson transform for d-derivative of a function under the Caputo operator. Some initial value problems based upon Caputo type fractional operator have been precisely solved using the results obtained thereof.
Źródło:
Journal of Applied Mathematics and Computational Mechanics; 2020, 19, 1; 57-66
2299-9965
Pojawia się w:
Journal of Applied Mathematics and Computational Mechanics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Laplace-Carson integral transform for exact solutions of non-integer order initial value problems with Caputo operator
Autorzy:
Kumar, Prem
Qureshi, Sania
Powiązania:
https://bibliotekanauki.pl/articles/1839810.pdf
Data publikacji:
2020
Wydawca:
Politechnika Częstochowska. Wydawnictwo Politechniki Częstochowskiej
Tematy:
ordinary differential equations
Laplace transform
Riemann-Liouville integral
równanie różniczkowe zwyczajne
transformacja Laplace'a
całka Riemann-Liouville
Opis:
Finding the exact solution to dynamical systems in the field of mathematical modeling is extremely important and to achieve this goal, various integral transforms have been developed. In this research analysis, non-integer order ordinary differential equations are analytically solved via the Laplace-Carson integral transform technique, which is a technique that has not been previously employed to test the non-integer order differential systems. Firstly, it has proved that the Laplace-Carson transform for n-times repeated classical integrals can be computed by dividing the Laplace-Carson transform of the underlying function by n-th power of a real number p which later helped us to present a new result for getting the Laplace-Carson transform for d-derivative of a function under the Caputo operator. Some initial value problems based upon Caputo type fractional operator have been precisely solved using the results obtained thereof.
Źródło:
Journal of Applied Mathematics and Computational Mechanics; 2020, 19, 1; 57-66
2299-9965
Pojawia się w:
Journal of Applied Mathematics and Computational Mechanics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A Two-step Hybrid Block Method for the Numerical Integration of Higher Order Initial Value Problems of Ordinary Differential Equations
Autorzy:
Osa, Adoghe Lawrence
Olaoluwa, Omole Ezekiel
Powiązania:
https://bibliotekanauki.pl/articles/1075837.pdf
Data publikacji:
2019
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
Block method
Collocation
Fourth order
Higher Order
Hybrid
approximate solutions
power series
symmetry
zero stability
Opis:
In this paper, a two-step implicit hybrid block multistep method is proposed for the approximate solution of higher order ordinary differential equations with a specification of fourth order. The study provides the use of both collocation and interpolation techniques to obtain the schemes. Direct form of power series is used as basis function for approximation solution. An order eight symmetric and zero-stable method is obtained. To implement our method, predictors of the same order of accuracy as the main method were developed using Taylor’s series algorithm. This implementation strategy is found to be efficient and more accurate as the result has shown in the numerical experiments. The result obtained confirmed the superiority of our method over existing methods.
Źródło:
World Scientific News; 2019, 118; 236-250
2392-2192
Pojawia się w:
World Scientific News
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Using Shehu integral transform to solve fractional order Caputo type initial value problems
Autorzy:
Qureshi, Sania
Kumar, Prem
Powiązania:
https://bibliotekanauki.pl/articles/122809.pdf
Data publikacji:
2019
Wydawca:
Politechnika Częstochowska. Wydawnictwo Politechniki Częstochowskiej
Tematy:
ordinary differential equations
Laplace transform
Riemann-Liouville integral
równanie różniczkowe zwyczajne
transformata Laplace'a
całka Riemann-Liouville
Opis:
In the present research analysis, linear fractional order ordinary differential equations with some defined condition (s) have been solved under the Caputo differential operator having order α > 0 via the Shehu integral transform technique. In this regard, we have presented the proof of finding the Shehu transform for a classical nth order integral of a piecewise continuous with an exponential nt h order function which leads towards devising a theorem to yield exact analytical solutions of the problems under investigation. Varying fractional types of problems are solved whose exact solutions can be compared with solutions obtained through existing transformation techniques including Laplace and Natural transforms.
Źródło:
Journal of Applied Mathematics and Computational Mechanics; 2019, 18, 2; 75-83
2299-9965
Pojawia się w:
Journal of Applied Mathematics and Computational Mechanics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Existence of minimal and maximal solutions to RL fractional integro-differential initial value problems
Autorzy:
Denton, Z.
Ramirez, J. D.
Powiązania:
https://bibliotekanauki.pl/articles/255901.pdf
Data publikacji:
2017
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
Riemann Liouville derivative
integro-differential equation
monotone method
Opis:
In this work we investigate integro-differential initial value problems with Riemann Liouville fractional derivatives where the forcing function is a sum of an increasing function and a decreasing function. We will apply the method of lower and upper solutions and develop two monotone iterative techniques by constructing two sequences that converge uniformly and monotonically to minimal and maximal solutions. In the first theorem we will construct two natural sequences and in the second theorem we will construct two intertwined sequences. Finally, we illustrate our results with an example.
Źródło:
Opuscula Mathematica; 2017, 37, 5; 705-724
1232-9274
2300-6919
Pojawia się w:
Opuscula Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Modern Taylor series method in numerical integration
Moderní metoda Taylorovy řady v numerické integraci
Autorzy:
Chaloupka, J.
Necasová, G.
Veigend, P.
Kunovský, J.
Šátek, V.
Powiązania:
https://bibliotekanauki.pl/articles/113526.pdf
Data publikacji:
2017
Wydawca:
STE GROUP
Tematy:
Taylor series
ordinary differential equations
technical initial value problems
szereg Taylora
równanie różniczkowe zwyczajne
Opis:
The paper deals with extremely exact, stable, and fast numerical solutions of systems of differential equations. It also involves solutions of problems that can be reduced to solving a system of differential equations. The approach is based on an original mathematical method, which uses the Taylor series method for solving differential equations in a non-traditional way. Even though this method is not much preferred in the literature, experimental calculations have verified that the accuracy and stability of the Taylor series method exceed the currently used algorithms for numerically solving differential equations. The Modern Taylor Series Method (MTSM) is based on a recurrent calculation of the Taylor series terms for each time interval. Thus, the complicated calculation of higher order derivatives (much criticised in the literature) need not be performed but rather the value of each Taylor series term is numerically calculated. An important part of the method is an automatic integration order setting, i.e. using as many Taylor series terms as the defined accuracy requires. The aim of our research is to propose the extremely exact, stable, and fast numerical solver for modelling technical initial value problems that offers wide applications in many engineering areas including modelling of electrical circuits, mechanics of rigid bodies, control loop feedback (controllers), etc.
Clánek se zabývá presným, stabilním a rychlým rešením soustav diferenciálních rovnic. Soustavou diferenciálních rovnic lze reprezentovat velké množství reálných problému. Numerické rešení je založeno na unikátní numerické metode, která netradicne využívá Taylorovu radu. I presto, že tato metoda není v literature príliš preferována, experimentální výpocty potvrdily, že presnost a stabilita této metody presahuje aktuálne používané numerické algoritmy pro numerické rešení diferenciálních rovnic. Moderní metoda Taylorovy rady je založena na rekurentním výpoctu clenu Taylorovy rady v každém casovém intervalu. Derivace vyšších rádu nejsou pro výpocet prímo využity, derivace jsou zahrnuty do clenu Taylorovy rady, které se pocítají rekurentne numericky. Duležitou vlastností metody je automatická volba rádu metody v závislosti na velikosti integracního kroku, tzn. je využito tolik clenu Taylorovy rady, kolik vyžaduje zadaná presnost výpoctu. Cílem výzkumu je navrhnout velmi presný, stabilní a rychlý nástroj pro modelování technických pocátecních problému využitých v praxi pri modelování elektrických obvodu, mechaniky tuhých teles, problematiky zpetnovazebního rízení a další.
Źródło:
Systemy Wspomagania w Inżynierii Produkcji; 2017, 6, 4; 263-273
2391-9361
Pojawia się w:
Systemy Wspomagania w Inżynierii Produkcji
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Laguerre polynomial solutions of a class of initial and boundary value problems arising in science and engineering fields
Autorzy:
Gürbüz, B.
Sezer, M.
Powiązania:
https://bibliotekanauki.pl/articles/1061583.pdf
Data publikacji:
2016-07
Wydawca:
Polska Akademia Nauk. Instytut Fizyki PAN
Tematy:
02.30.Gp
02.30.Hq
02.70
Opis:
In this study, we consider high-order nonlinear ordinary differential equations with the initial and boundary conditions. These kinds of differential equations are essential tools for modelling problems in physics, biology, neurology, engineering, ecology, economy, astrophysics, physiology and so forth. Each of the mentioned problems are described by one of the following equations with the specific physical conditions: Riccati, Duffing, Emden-Fowler, Lane Emden type equations. We seek the approximate solution of these special differential equations by means of a operational matrix technique, called the Laguerre collocation method. The proposed method is based on the Laguerre series expansion and the collocation points. By using the method, the mentioned special differential equations together with conditions are transformed into a matrix form which corresponds to a system of nonlinear algebraic equations with unknown Laguerre coefficients, and thereby the problem is approximately solved in terms of Laguerre polynomials. In addition, some numerical examples are presented to demonstrate the efficiency of the proposed method and the obtained results are compared with the existing results in literature.
Źródło:
Acta Physica Polonica A; 2016, 130, 1; 194-197
0587-4246
1898-794X
Pojawia się w:
Acta Physica Polonica A
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Weighted difference schemes for systems of quasilinear first order partial functional differential equations
Autorzy:
Szafrańska, Anna
Powiązania:
https://bibliotekanauki.pl/articles/747972.pdf
Data publikacji:
2015
Wydawca:
Polskie Towarzystwo Matematyczne
Tematy:
initial boundary value problems, difference methods, stability and convergence, interpolating operators, error estimates, comparison methods
zagadnienia początkowo-brzegowe, metody różnicowe, stabilność i zbieżność, operatory interpolacyjne, oszacowanie błędu, metody porównawcze.
Opis:
Praca dotyczy zagadnien poczatkowo brzegowych typu Dirichlet’a dlaukładów quasiliniowych równan rózniczkowo-funkcyjnych. Zamieszczona jest konstrukcjawazonych metod róznicowych dla wyjsciowych zagadnien rózniczkowychoraz przeprowadzona jest pełna analiza zbieznosci. Niezbedne załozenia obejmujaoszacowania typu Perrona dla funkcji danych wzgledem argumentów funkcyjnych.Dowód stabilnosci metody róznicowej opiera sie na technice porównawczej. Teoretycznerezultaty zobrazowane sa na przykładzie całkowego równania rózniczkowegooraz równan rózniczkowych z odchylonym argumentem.
The paper deals with initial boundary value problems of the Dirichlet type for system of quasilinear functional differential equations.We investigate weighted difference methods for these problems.A complete convergence analysis of the considered difference methods is given. Nonlinear estimates of the Perron type with respect to functional variables for given functions are assumed. The proof of the stability of difference problems is based on a comparison technique. The results obtained here can be applied to differential integral problems and differential equations with deviated variables.Numerical examples are presented.
Źródło:
Mathematica Applicanda; 2015, 43, 2
1730-2668
2299-4009
Pojawia się w:
Mathematica Applicanda
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Difference functional inequalities and applications
Autorzy:
Szafrańska, A.
Powiązania:
https://bibliotekanauki.pl/articles/255602.pdf
Data publikacji:
2014
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
initial boundary value problems
difference functional inequalities
difference methods
stability and convergence
interpolating operators
error estimates
Opis:
The paper deals with the difference inequalities generated by initial boundary value problems for hyperbolic nonlinear differential functional systems. We apply this result to investigate the stability of constructed difference schemes. The proof of the convergence of the difference method is based on the comparison technique, and the result for difference functional inequalities is used. Numerical examples are presented.
Źródło:
Opuscula Mathematica; 2014, 34, 2; 405-423
1232-9274
2300-6919
Pojawia się w:
Opuscula Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Matrix Greens function of double-diffusivity problem and its applications to problems with inner point source
Autorzy:
Chaplya, Yevhen
Chernukha, Olha
Bilushchak, Yurii
Powiązania:
https://bibliotekanauki.pl/articles/1954454.pdf
Data publikacji:
2014
Wydawca:
Politechnika Gdańska
Tematy:
Green’s function
double-diffusivity
initial-boundary value problem
point mass source
random coordinate
Opis:
The matrix Green’s function of the initial-boundary value problem of admixture double-diffusivity is defined. The initial-boundary value problem with a point source is formulated for the matrix elements for determination of the matrix Green’s function. Formulae for matrix elements are obtained and the behavior of Green’s functions is investigated. It is shown that the surface generated by the Green’s function has a typical sharp peak in the vicinity of the point of action of the point mass source, and in the vicinity of the top boundary of the layer ,the values of the second element of the Green’s function are times higher than the values of the first one the state of which is corresponding to the quick migration way. On this basis the solutions of the initial-boundary value problems under the action of the internal point source of mass are found. The cases of the deterministic source as well as stochastic ones under uniformand triangular distributions of the coordinate of the mass source location are considered.
Źródło:
TASK Quarterly. Scientific Bulletin of Academic Computer Centre in Gdansk; 2019, 23, 1; 75-99
1428-6394
Pojawia się w:
TASK Quarterly. Scientific Bulletin of Academic Computer Centre in Gdansk
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A verified method for solving piecewise smooth initial value problems
Autorzy:
Auer, E.
Kiel, S.
Rauh, A.
Powiązania:
https://bibliotekanauki.pl/articles/331354.pdf
Data publikacji:
2013
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
interval method
non smooth system
initial value problem
metoda przedziałowa
metoda nie gładka
zagadnienie początkowe
Opis:
In many applications, there is a need to choose mathematical models that depend on non-smooth functions. The task of simulation becomes especially difficult if such functions appear on the right-hand side of an initial value problem. Moreover, solution processes from usual numerics are sensitive to roundoff errors so that verified analysis might be more useful if a guarantee of correctness is required or if the system model is influenced by uncertainty. In this paper, we provide a short overview of possibilities to formulate non-smooth problems and point out connections between the traditional non-smooth theory and interval analysis. Moreover, we summarize already existing verified methods for solving initial value problems with non-smooth (in fact, even not absolutely continuous) right-hand sides and propose a way of handling a certain practically relevant subclass of such systems. We implement the approach for the solver VALENCIA-IVP by introducing into it a specialized template for enclosing the first-order derivatives of non-smooth functions. We demonstrate the applicability of our technique using a mechanical system model with friction and hysteresis. We conclude the paper by giving a perspective on future research directions in this area.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2013, 23, 4; 731-747
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Implicit difference methods for infinite systems of hyperbolic functional differential equations
Autorzy:
Szafrańska, Anna
Powiązania:
https://bibliotekanauki.pl/articles/745990.pdf
Data publikacji:
2010
Wydawca:
Polskie Towarzystwo Matematyczne
Tematy:
initial boundary value problems
difference functional equations
difference methods
stability and convergence
interpolating operators
nonlinear estimates of the Perron type
Opis:
The paper deal with classical solutions of initial boundary value problems for infinite systems of nonlinear differential functional equations. Two types of difference schemes are constructed. First we show that solutions of our differential problem can be approximated by solutions of infinite difference functional schemes. In the second part of the paper we proof that solutions of finite difference systems approximate the solutions of aur differential problem. We give a complete convergence analysis for both types of difference methods. We adopt nonlinear estimates of the Perron type for given functions with respect to the functional variable. The proof of the stability is based on the comparison technique. Numerical examples are presented.
Źródło:
Commentationes Mathematicae; 2010, 50, 1
0373-8299
Pojawia się w:
Commentationes Mathematicae
Dostawca treści:
Biblioteka Nauki
Artykuł

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies