Finding the exact solution to dynamical systems in the field of mathematical modeling is extremely important and to achieve this goal, various integral transforms have been developed. In this research analysis, non-integer order ordinary differential equations are analytically solved via the Laplace-Carson integral transform technique, which is a technique that has not been previously employed to test the non-integer order differential systems. Firstly, it has proved that the Laplace-Carson transform for n-times repeated classical integrals can be computed by dividing the Laplace-Carson transform of the underlying function by n-th power of a real number p which later helped us to present a new result for getting the Laplace-Carson transform for d-derivative of a function under the Caputo operator. Some initial value problems based upon Caputo type fractional operator have been precisely solved using the results obtained thereof.
Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies
Informacja
SZANOWNI CZYTELNICY!
UPRZEJMIE INFORMUJEMY, ŻE BIBLIOTEKA FUNKCJONUJE W NASTĘPUJĄCYCH GODZINACH:
Wypożyczalnia i Czytelnia Główna: poniedziałek – piątek od 9.00 do 19.00