- Tytuł:
- A Fan-Type Heavy Pair Of Subgraphs For Pancyclicity Of 2-Connected Graphs
- Autorzy:
- Wideł, Wojciech
- Powiązania:
- https://bibliotekanauki.pl/articles/31341120.pdf
- Data publikacji:
- 2016-02-01
- Wydawca:
- Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
- Tematy:
-
cycle
Fan-type heavy subgraph
Hamilton cycle
pancyclicity - Opis:
- Let $G$ be a graph on $n$ vertices and let $H$ be a given graph. We say that $G$ is pancyclic, if it contains cycles of all lengths from 3 up to $n$, and that it is $H-f_1$-heavy, if for every induced subgraph $K$ of $G$ isomorphic to $H$ and every two vertices $u, v \in V (K)$, $d_K(u, v) = 2$ implies $ \text{min} \{ d_G(u), d_G(v) \} \ge \frac{n+1}{2} $. In this paper we prove that every 2-connected $ \{ K_{1,3} , P_5}-f_1$-heavy graph is pancyclic. This result completes the answer to the problem of finding $ f_1 $-heavy pairs of subgraphs implying pancyclicity of 2-connected graphs.
- Źródło:
-
Discussiones Mathematicae Graph Theory; 2016, 36, 1; 173-184
2083-5892 - Pojawia się w:
- Discussiones Mathematicae Graph Theory
- Dostawca treści:
- Biblioteka Nauki