- Tytuł:
- Optical and Optoelectronic Properties of ZnS Nanostructured Thin Film
- Autorzy:
-
Borah, J.
Sarma, K. - Powiązania:
- https://bibliotekanauki.pl/articles/1812035.pdf
- Data publikacji:
- 2008-10
- Wydawca:
- Polska Akademia Nauk. Instytut Fizyki PAN
- Tematy:
-
73.61.Ga
73.61.Tm
74.25.Gz - Opis:
- ZnS nanocrystalline thin films were grown into the polyvinyl alcohol matrix and were synthesized by chemical route. Films were prepared on glass substrate by varying the deposition parameters and pH of the solution. Nanocrystalline thin film prepared under optimum growth conditions shows band gap value 3.88 eV as observed from optical absorption data. The band gap is found to be higher (3.88 eV) indicating blue shift. The particle size, calculated from the shift of direct band gap, due to quantum confinement effect is 5.8 nm. Photoluminescence spectrum shows the blue luminescence peaks (centered at 425 nm), which can be attributed to the recombination of the defect states. ZnS nanocrystalline thin films are also found to be photosensitive in nature. However, the photosensitivity decreases due to ageing and exposure to oxygen. In case of nanostructured film, the I-V characteristics are observed in dark and under illumination showing photosensitive nature of these films, too. The dark current, however, is found to be greater when observed in vacuum compared to air. Both dark current and photocurrent are found to be ohmic in nature up to a certain applied bias. The observed data shows that nanostructured films are found to be suitable for device application. The surface morphology of the film is also characterized by scanning electron microscope.
- Źródło:
-
Acta Physica Polonica A; 2008, 114, 4; 713-719
0587-4246
1898-794X - Pojawia się w:
- Acta Physica Polonica A
- Dostawca treści:
- Biblioteka Nauki