Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Parviz, L." wg kryterium: Wszystkie pola


Wyświetlanie 1-2 z 2
Tytuł:
Performance evaluation of remote sensing data with machine learning technique to determine soil color
Autorzy:
Parviz, L.
Powiązania:
https://bibliotekanauki.pl/articles/971181.pdf
Data publikacji:
2020
Wydawca:
Uniwersytet Marii Curie-Skłodowskiej. Wydawnictwo Uniwersytetu Marii Curie-Skłodowskiej
Tematy:
soil color
munsell chart
stepwise regression
ann
mpdi
Opis:
The aim of the present research is the determination of soil color by spectral bands and indices obtained from MODIS images. For this purpose, soil samples were collected from East Azerbaijan Province (Iran) and their color and texture were investigated through Munsell color system and hydrometer method, respectively. Stepwise regression, principle component analysis and sensitivity function methods were employed to find the dominant indices and bands using artificial neural network (ANN) as one of the machine learning techniques. The improved indices as the model input had better performance, for example, the calculation of correlation coefficient between indices and hue showed 51.48% increase of correlation coefficient with comparison of the normalized difference vegetation index (NDVI) to modified soil adjustment vegetation index (MSAVI) and 54.54% correlation enhancement of soil adjustment vegetation index (SAVI) com- pared to MSAVI. Stepwise regression method along with error criteria decline may enhance the performance of soil color model. In comparison with multivariate regression, ANN model exhib- ited better performance (with a 12.61% mean absolute error [MAE] decline). Temporal variation of modified perpendicular drought index (MPDI) as well as band 31 could justify the Munsell soil color components variations specifically chroma and hue. MPDI and thermal bands could be employed as a precise indicator in soil color analysis. Thus, remote sensing data combined with machine learning technique can clarify the procedure potential for soil color determination.
Źródło:
Polish Journal of Soil Science; 2020, 53, 1
0079-2985
Pojawia się w:
Polish Journal of Soil Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Shape optimization of a hydrofoil with leadingedge protuberances using full factorial sweep sampling and an RBF surrogate model
Autorzy:
Nazemian, Amin
Ghadimi, Parviz
Powiązania:
https://bibliotekanauki.pl/articles/135182.pdf
Data publikacji:
2020
Wydawca:
Akademia Morska w Szczecinie. Wydawnictwo AMSz
Tematy:
humpback whale flippers
leading-edge protuberances
free-form deformation (FFD)
surrogate model
CFD
lift-to-drag ratio (L/D)
Opis:
This paper investigates improving the leading-edge of a hydrofoil with sinusoidal protuberances based on its hydrodynamic performance. The original hydrofoil geometry was inspired by the leading edge of the flipper of a humpback whale. A multi-step optimization process was performed for a 634-021 hydrofoil. The free-form deformation technique defined the shape parameters as a variable design, and these parameters included the amplitude of the leading-edge protuberances, which ranged from 0 to 20% of the chord length, and the corrugate span, with 3 and 4 crests. The flow characteristics of a parametric hydrofoil were examined using a CFD solver, and the lift, drag, and lift-to-drag ratio (L/D) were computed as responses to the optimization cycle. To accomplish this, two design study methods were sequentially applied at different angles of attack. A full factorial design sweep tool was applied that went through all parameter value combinations, and an RBF-based surrogate model was constructed to investigate the system behavior. The results indicated the existence of an optimum design point, and the highest L/D ratio was determined to be 10.726 at a 12° angle of attack.
Źródło:
Zeszyty Naukowe Akademii Morskiej w Szczecinie; 2020, 62 (134); 116-123
1733-8670
2392-0378
Pojawia się w:
Zeszyty Naukowe Akademii Morskiej w Szczecinie
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies