The aim of the present research is the determination of soil color by spectral bands and
indices obtained from MODIS images. For this purpose, soil samples were collected from East
Azerbaijan Province (Iran) and their color and texture were investigated through Munsell color
system and hydrometer method, respectively. Stepwise regression, principle component analysis
and sensitivity function methods were employed to find the dominant indices and bands using
artificial neural network (ANN) as one of the machine learning techniques. The improved indices
as the model input had better performance, for example, the calculation of correlation coefficient
between indices and hue showed 51.48% increase of correlation coefficient with comparison of
the normalized difference vegetation index (NDVI) to modified soil adjustment vegetation index
(MSAVI) and 54.54% correlation enhancement of soil adjustment vegetation index (SAVI) com-
pared to MSAVI. Stepwise regression method along with error criteria decline may enhance the
performance of soil color model. In comparison with multivariate regression, ANN model exhib-
ited better performance (with a 12.61% mean absolute error [MAE] decline). Temporal variation
of modified perpendicular drought index (MPDI) as well as band 31 could justify the Munsell
soil color components variations specifically chroma and hue. MPDI and thermal bands could be
employed as a precise indicator in soil color analysis. Thus, remote sensing data combined with
machine learning technique can clarify the procedure potential for soil color determination.
Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies
Informacja
SZANOWNI CZYTELNICY!
UPRZEJMIE INFORMUJEMY, ŻE BIBLIOTEKA FUNKCJONUJE W NASTĘPUJĄCYCH GODZINACH:
Wypożyczalnia i Czytelnia Główna: poniedziałek – piątek od 9.00 do 19.00