- Tytuł:
- Preliminary results of DCB C1-C2 in a GPS system
- Autorzy:
- Krasuski, K.
- Powiązania:
- https://bibliotekanauki.pl/articles/114650.pdf
- Data publikacji:
- 2015
- Wydawca:
- Stowarzyszenie Inżynierów i Techników Mechaników Polskich
- Tematy:
-
GPS
DCB
geometry-free linear combination - Opis:
- The paper present the results of studies related to estimation of instrumental biases C1-C2 in a GPS system. The data from LAMA and WROC reference stations in Poland were used in numerical processing, using the least squares method in SciTEC software. The Differential Code Biases C1-C2 were determined based on the Geometry Free linear combination with temporal resolution of 2 hours, separately for each station. The first results of the DCB C1-C2 were compared with theoretical values based on monthly CODE’s product. Moreover, the theoretical values of SDCB C1-C2 include many anomalies and the reference sum of SDCB C1-C2 is not equal to 0. The standard deviation of the mean difference between CODE and each station is about ±3 ns. The magnitude order of SDCB C1-C2 for each station for each day is less than ±10 ns with the standard deviation less than ±0.5 ns. The average values of SDCB C1-C2 for each station were determined based on a RINEX file from 6 measurements days. The SDCB C1-C2 from each station have got similar trends, except to the bias of SVN1, where the difference is more than 2 ns. Generally, the mean difference of SDCB C1-C2 between the LAMA and WROC solution is about ±1 ns. The RDCB C1-C2 are more stable than the SDCB C1-C2, with a daily repeatability about 0.7 ns. The characteristic of RDCB C1-C2 for each station over a few days is very irregular, with the range of about ±1.5 ns.
- Źródło:
-
Measurement Automation Monitoring; 2015, 61, 10; 465-469
2450-2855 - Pojawia się w:
- Measurement Automation Monitoring
- Dostawca treści:
- Biblioteka Nauki