Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "GMDH method" wg kryterium: Wszystkie pola


Wyświetlanie 1-4 z 4
Tytuł:
Wady i zalety metody prognozowania zachowania złożonych procesów opartej na metodzie GMDH z funkcjami wrażliwości
The advantages and limitations of the complex processes behavior prediction method with sensitivity functions based on GMDH
Autorzy:
Bobkowska, J.
Powiązania:
https://bibliotekanauki.pl/articles/158179.pdf
Data publikacji:
2014
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
procesy złożone
prognoza
małoliczne zbiory próbek
funkcje wrażliwości
metoda GMDH
regresja
complex processes
prognosis
short sample of data
sensitivity functions
GMDH method
regression
Opis:
W artykule przedstawiono zalety i ograniczenia metody predykcji procesów złożonych reprezentowanych przez szeregi czasowe, opartej na metodzie GMDH i korzystającej z właściwości funkcji wrażliwości. Użycie funkcji wrażliwości ma zapewnić zwiększenie precyzji predykcji w stosunku do metody podstawowej, dzięki informacjom o kierunku i szybkości zmian wartości zmiennych szeregu, zawartych w funkcjach wrażliwości. Na wejściu potrzebna jest niewielka ilości danych (siedem). Metoda wykazuje zwiększenie skuteczności w stosunku do GMDH nawet przy wykorzystaniu wielomianów Kołmogorowa-Gabora jedynie drugiego stopnia.
In this paper, there are presented the advantages and limitations of the prediction method of complex processes (presented in the form of the time series) which is based on the Russian researcher A. G. Ivakhnenko-GMDH method and uses the properties of the first and second-order sensitivity functions. Sensitivity function is used to ensure an increase of the precision of the prediction in relation to the basic method, thanks to the information about direction and changes in the values of the time series variables and the speed of these changes included in them. We need only small amount of input data (seven) opposed to the other regression methods using large amounts of information in order to study the statistical relationship between time series variables. On the basis of several alternative (partial) models we receive several outputs for every time-series variable, from which we choose the best (terms previously fixed criteria) [1]. Figures 1, 4, 6 and 7 show the results of the prediction of the best partial models for one or two steps forward. Others show values of the sensitivity functions indicating an influence on the studied variables. Results of the prediction without using the sensitivity function differ significantly from the expected values, therefore, are not shown in the drawings. The method shows an increase in efficacy in comparison with GMDH even for second degree Kolomogorov-Gabor polynomials.
Źródło:
Pomiary Automatyka Kontrola; 2014, R. 60, nr 12, 12; 1136-1139
0032-4140
Pojawia się w:
Pomiary Automatyka Kontrola
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The ERP class system objective assessment method
Autorzy:
Patalas, J.
Krupa, T.
Powiązania:
https://bibliotekanauki.pl/articles/117659.pdf
Data publikacji:
2005
Wydawca:
Polskie Towarzystwo Promocji Wiedzy
Tematy:
ERP systems
method GMDH
group method of data handling
Opis:
This paper presents ERP class system objective assessment method when using the neural systems GMDH basing on the Ivachnienko algorithm. An approach to ERPs evaluation aimed at their successful implementation into a class of the small and medium-sized enterprises (SMEs) is considered. The set of performance indices supporting an ERP evaluation in the context of its implementation into a given SME is proposed. Consequently the decision model binding the selected indicators of effectiveness of SME implementation with the parameters of a given ERP system and the parameters of the company as such, which introduced this system is discussed.
Źródło:
Applied Computer Science; 2005, 1, 1; 115-132
1895-3735
Pojawia się w:
Applied Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Influence of the GMDH neural network data preparation method on UTC(PL) correction prediction results
Autorzy:
Miczulski, W.
Sobolewski, Ł.
Powiązania:
https://bibliotekanauki.pl/articles/221698.pdf
Data publikacji:
2012
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
GMDH neural network
national timescale
atomic clock
time series analysis
Opis:
The article presents results of the influence of the GMDH (Group Method of Data Handling) neural network input data preparation method on the results of predicting corrections for the Polish timescale UTC(PL). Prediction of corrections was carried out using two methods, time series analysis and regression. As appropriate to these methods, the input data was prepared based on two time series, ts1 and ts2. The implemented research concerned the designation of the prediction errors on certain days of the forecast and the influence of the quantity of data on the prediction error. The obtained results indicate that in the case of the GMDH neural network the best quality of forecasting for UTC(PL) can be obtained using the time-series analysis method. The prediction errors obtained did not exceed the value of š 8 ns, which confirms the possibility of maintaining the Polish timescale at a high level of compliance with the UTC.
Źródło:
Metrology and Measurement Systems; 2012, 19, 1; 123-132
0860-8229
Pojawia się w:
Metrology and Measurement Systems
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Comparison of the results of time series prediction obtained with the classical GMDH algorithm and the modified method containing sensitivity functions
Porównanie rezultatów predykcji szeregów czasowych uzyskanych za pomocą klasycznego algorytmu GMDH oraz zmodyfikowanej metody GMDH z funkcjami czułości
Autorzy:
Bobkowska, J.
Powiązania:
https://bibliotekanauki.pl/articles/155812.pdf
Data publikacji:
2013
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
complex systems
prediction
sensitivity functions
GMDH
partial models
Kolmogorov-Gabor equation
time series
short sample of data
systemy złożone
predykcja
funkcje czułości
modele częściowe
równania Kołmogorowa-Gabora
szeregi czasowe
próbki niewielu danych
Opis:
The paper presents the results of prediction experiments dealing with the behavior of a complex process containing significant regularity which is modeled by a given time series. In my research I use only a small amount of the input data in order to predict future states of the aforementioned time series using a modified GMDH containing sensitivity functions. It turns out that, for some specific processes, sensitivity functions allow us to obtain more accurate results than the classical GMDH.
Poniższy artykuł przedstawia wyniki eksperymentów dotyczących predykcji zachowania pewnego złożonego procesu zawierającego znaczne regularności, który modelowany jest za pomocą szeregu czasowego. W celu predykcji kolejnych wartości szeregu korzystam jedynie z niewielkiej ilości danych wejściowych stosując zmodyfikowaną metodę GMDH (Group Method of Data Handling) zawierającą funkcje czułości. Metody statystyczne stosowane zwykle w celu ustalenia zależności między poszczególnymi zmiennymi są całkowicie nieprzydatne w warunkach niewielkiej ilości danych wejściowych. Trudno w takich warunkach dostrzec i zbadać regularności szeregu i zależności pomiędzy zmiennymi tego szeregu. Nawet jeśli badany szereg jest szeregiem ze ściśle określoną regularnością, to nie mamy pewności, że ilość próbek, na których ma sposobność pracować badacz jest wystarczająca do określenia wszystkich jego cech. Proces przedstawiony za pomocą pewnego szeregu, może mieć np. składnik cykliczny, który przy małej ilości próbek będzie niewidoczny. Korzystamy więc z narzędzia umożliwiającego uchwycenie wahań analizowanego procesu, jego siły czy kierunku wykorzystywanego między innymi w dyscyplinach zajmujących się sterowaniem procesami. Jednym z takich narzędzi szacujących są właśnie funkcje czułości. Uzyskiwane rezultaty badań pokazują, że zastosowanie funkcji czułości pozwala na otrzymanie dokładniejszych wyników predykcji niż klasyczna metoda GMDH dla pewnych szczególnych zachowań procesu.
Źródło:
Pomiary Automatyka Kontrola; 2013, R. 59, nr 7, 7; 688-691
0032-4140
Pojawia się w:
Pomiary Automatyka Kontrola
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-4 z 4

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies