Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Długosz, Jerzy" wg kryterium: Wszystkie pola


Wyświetlanie 1-12 z 12
Tytuł:
Radon intercomparison tests : Katowice, 2016
Autorzy:
Chałupnik, Stanisław
Skubacz, Krystian
Wysocka, Małgorzata
Mazur, Jadwiga
Bonczyk, Michał
Kozak, Krzysztof
Grządziel, Dominika
Urban, Paweł
Tchorz-Trzeciakiewicz, D.
Kozłowska, Beata
Walencik-Łata, Agata
Podstawczyńska, Agnieszka
Olszewski, Jerzy
Bartak, Jakub
Karpińska, Maria
Wołoszczuk, Katarzyna
Dohojda, Marek
Nowak, Jakub
Długosz-Lisiecka, Magdalena
Foerster, Elisabeth
Przylibski, Tadeusz A.
Powiązania:
https://bibliotekanauki.pl/articles/146183.pdf
Data publikacji:
2020
Wydawca:
Instytut Chemii i Techniki Jądrowej
Tematy:
active monitors
passive monitors
Polish Radon Centre
proficiency test
radon
Opis:
At the beginning of the year 2016, the representatives of the Polish Radon Centre decided to organize proficiency tests (PTs) for measurements of radon gas and radon decay products in the air, involving radon monitors and laboratory passive techniques. The Silesian Centre for Environmental Radioactivity of the Central Mining Institute (GIG), Katowice, became responsible for the organization of the PT exercises. The main reason to choose that location was the radon chamber in GIG with a volume of 17 m3 , the biggest one in Poland. Accordingly, 13 participants from Poland plus one participant from Germany expressed their interest. The participants were invited to inform the organizers about what types of monitors and methods they would like to check during the tests. On this basis, the GIG team prepared the proposal for the schedule of exercises, such as the required level(s) of radon concentrations, the number and periods of tests, proposed potential alpha energy concentration (PAEC) levels and also the overall period of PT. The PT activity was performed between 6th and 17th June 2016. After assessment of the results, the agreement between radon monitors and other measurement methods was confirmed. In the case of PAEC monitors and methods of measurements, the results of PT exercises were consistent and confirmed the accuracy of the calibration procedures used by the participants. The results of the PAEC PTs will be published elsewhere; in this paper, only the results of radon intercomparison are described.
Źródło:
Nukleonika; 2020, 65, 2; 127-132
0029-5922
1508-5791
Pojawia się w:
Nukleonika
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Programy profilaktyczne policji na rzecz podniesienia kultury bezpieczeństwa publicznego. Przykładowe działania
Prevention programs of the police to raise the culture of public safety. Example actions
Autorzy:
Długosz, Jerzy
Powiązania:
https://bibliotekanauki.pl/articles/40208155.pdf
Data publikacji:
2022
Wydawca:
Uniwersytet Przyrodniczo-Humanistyczny w Siedlcach
Tematy:
safety culture
public safety
diagnosis
improvement
kultura bezpieczeństwa
bezpieczeństwo publiczne
diagnozowanie
doskonalenie
Opis:
W artykule podjęto próbę opisania stosowanych obecnie form diagnozowania bezpieczeństwa publicznego oraz działających - jak też możliwych do wprowadzenia - form jego doskonalenia w zakresie kultury bezpieczeństwa publicznego. Samo bezpieczeństwo jest jedną z podstawowych potrzeb człowieka. Dlatego też jego poziom nieustannie powinien podlegać ocenie, a pojawiające się nowe możliwości udoskonalania jego badania winny być, w przypadku potwierdzenia ich skuteczności, wprowadzane w życie. Praktyka ta może przyczyniać się do podniesienia poziomu poczucia bezpieczeństwa w społeczeństwie
The article attempts to describe the currently used forms of diagnosing public security and the active - as well as possible to be introduced - forms of its improvement in the field of public security culture. Security itself is one of the basic human needs. Therefore, its level should be constantly assessed, and new opportunities to improve its research should be implemented, if their effectiveness is confirmed. This practice may contribute to increasing the sense of security in society.
Źródło:
DOCTRINA. Studia Społeczno-Polityczne; 2022, 19, 19; 84-95
1730-0274
Pojawia się w:
DOCTRINA. Studia Społeczno-Polityczne
Dostawca treści:
Biblioteka Nauki
Artykuł
  • odwiedzone
Tytuł:
Porównanie zakresu treści wojskowych map topograficznych zaboru rosyjskiego ziem polskich z początku XX wieku na przykładzie Kielc
The comparison of the contents’ scope of military topographic maps of the Polish territory in Russian partition from the early twentieth century on the example of Kielce
Autorzy:
Długosz, Jerzy
Powiązania:
https://bibliotekanauki.pl/articles/18055672.pdf
Data publikacji:
2023
Wydawca:
Polska Akademia Nauk. Instytut Historii im. Tadeusza Manteuffla PAN w Warszawie
Tematy:
old topographic maps
comparative analysis
Kielce
historical GIS
cartographic semiotics
dawne mapy topograficzne
analiza porównawcza
Historical GIS
semiotyka kartograficzna
Opis:
W artykule porównano treść map topograficznych opracowanych na początku XX w., przedstawiających fragment obszaru pozostającego pod zaborem rosyjskim – Kielce i okolice. Przeanalizowane zostały topograficzne mapy wojskowe państw zaborczych: rosyjska Dwuwiorstówka, austriacka Spezialkarte i niemiecka Karte des Westlichen Russlands. Mapy te cechuje wiele podobieństw: zbliżona skala, podobny okres i cel powstania. Przeprowadzona została analiza elementów topografii: sieci komunikacyjnej, zabudowy, budynków, obiektów przemysłowo-gospodarczych i warstw przyrodniczych pod względem wizualnych różnic, kluczy znaków oraz obiektywnych miar, takich jak długość czy powierzchnia.
The article compares the scope of topographic maps of Polish territory annexed by Russia, prepared at the beginning of the twentieth century: Kielce and its surroundings. The comparison includes military topographic maps prepared by every country taking part in the partition of Poland – Russia (Dwuwiorstówka), Austria (Spezialkarte) and Prussia (Karte des Westlichen Russlands). These maps have very much in common – their scale, date and purpose of their release were similar. The analysis includes the comparison of, for example, lengths or areas of maps’ topographic elements and the visual comparison of maps and their symbology keys.
Źródło:
Studia Geohistorica; 2022, 10; 100-118
2300-2875
Pojawia się w:
Studia Geohistorica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Jerzy Wyrozumski (1930–2018)
Autorzy:
Jasiński, Tomasz
Powiązania:
https://bibliotekanauki.pl/articles/703620.pdf
Data publikacji:
2018
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
Jerzy Wyrozumski
medievalist
history of science
Jagiellonian University
re-edition of history of Poland by Jan Długosz
Opis:
On November 2, 2018, an outstanding Polish medievalist Jerzy Lesław Wyrozumski died in Kraków; he was born on March 7, 1930 in Trembowla (now Ukraine). He graduated in 1955 with a degree in history at the Jagiellonian University. He wrote his master's thesis and doctoral dissertation under the supervision of Roman Grodecki. In 1981 he received the title of professor; he was dean of the Faculty of Philosophy and History in the years 1981–1987, and from 1987 to 1990 he was the prorector of the Jagiellonian University. He published over 600 scholarly books, articles and reviews.
Źródło:
Nauka; 2018, 4
1231-8515
Pojawia się w:
Nauka
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Jan Długosz – polski prekursor państwoznawstwa
Jan Długosz – Polish pioneer of state science
Autorzy:
Kowaleski, Jerzy T.
Powiązania:
https://bibliotekanauki.pl/articles/962775.pdf
Data publikacji:
2019
Wydawca:
Główny Urząd Statystyczny
Tematy:
historia gospodarcza
Jan Długosz
państwoznawstwo
history of economy
jan długosz
state science
Opis:
Celem artykułu jest przedstawienie słowno-liczbowych opisów zawartych w pracach polskiego XV-wiecznego duchownego, kronikarza i historyka Jana Długosza jako źródeł, na podstawie których możliwe jest stworzenie statystycznego obrazu ówczesnej sytuacji gospodarczej, szczególnie w skali mikro (parafia, dekanat) i mezo (diecezja). Omówione zostały biografia i wybrane prace Długosza. Uwagę zwrócono na elementy państwoznawstwa w dorobku Długosza, zwłaszcza w Regestrum Ecclesiae Cracoviensis oraz we wprowadzeniu do Annales (wyliczenie i opis polskich rzek, jezior i miast nadbrzeżnych – Chorographia), a także przykład skrupulatnego opisu sytuacji gospodarczej zaczerpnięty z Liber beneficiorum. Dzieło to w powiązaniu z analogicznymi rejestrami lub inwentarzami uposażeń kościelnych w diecezjach poznańskiej i wrocławskiej, sporządzanymi w zbliżonym okresie, stanowi ważne źródło w badaniach państwoznawczych dotyczących historii gospodarczej kraju u schyłku średniowiecza.
The main purpose of this article is to present verbal and numerical descriptions included in the works by Jan Długosz (the 15th-century Polish priest, annalist and historian) as a base for creating the statistical picture of the then economic situation of Polish regions, especially in the micro-scale (parishes, deaneries) and the mezzo-scale (dioceses). Jan Długosz’s biography and selected works were discussed in the study. The study focuses on the elements of state science in his works, particularly in Regestrum Ecclesiae Cracoviensis and in the introduction to Annales (the enumeration and description of Polish rivers, lakes and waterfront cities – Chorographia), as well as on the detailed description of the economic situation presented in Liber beneficiorum. This Długosz’s work along with the corresponding registers or inventories of church wages in the Poznań and Wrocław dioceses constitute a significant source for state science studies concerning the history of economy in Poland at the end of the Middle Ages.
Źródło:
Wiadomości Statystyczne. The Polish Statistician; 2019, 64, 8; 51-60
0043-518X
Pojawia się w:
Wiadomości Statystyczne. The Polish Statistician
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Applications of mathematics in selected control and decision processes
Autorzy:
Baranowski, Jerzy
Długosz, Marek
Ganobis, Michał
Skruch, Paweł
Mitkowski, Wojciech
Powiązania:
https://bibliotekanauki.pl/articles/748026.pdf
Data publikacji:
2011
Wydawca:
Polskie Towarzystwo Matematyczne
Opis:
Na styku teorii i praktyki pojawia się coraz częściej nowa dyscyplina naukowa nazywana matematyką przemysłową lub technomatematyką. Nie jest to pomysł nowy. Historia nauki od dawna obserwuje usytuowanie rozważań matematycznych pomiędzy Światem abstrakcyjnych idei a światem materialnym. Ten fakt dobrze oddaje znana myśl Hugo Steinhausa: ,,Między duchem a materią pośredniczy matematyka'' [44]. Obszarem matematyki przemysłowej jest modelowanie różnego typu obiektów rzeczywistych i następnie poszukiwanie odpowiednich metod numerycznych do rozwiązywania zbudowanych wcześniej modeli matematycznych. W konsekwencji otrzymujemy algorytmy wspomagające podejmowanie decyzji w konkretnych procesach przemysłowych. Pomiędzy dobrą teorią i praktyką występuję pewnego rodzaju sprzężenie zwrotne. Teoria pozwala skutecznie oddziaływać na świat materialny. Z kolei rozwiązania techniczne generują nowe problemy matematyczne. Burzliwy rozwój technik komputerowych umożliwił w ostatnich latach dokładniejszą analizę i syntezę układów sterowania złożonymi procesami oraz wspomaga podejmowanie decyzji w różnych obszarach stosowanych praktycznie. Odkrywanie matematycznej struktury świata pobudza przedstawicieli nauk technicznych do działania zmierzającego do celowego oddziaływania na obiekty rzeczywiste. Weryfikacja praktyczna pomysłów inżynierów w wielu przypadkach jest skuteczna i przynosi wymierne efekty. W sterowaniu układów dynamicznych z powodzeniem stosuje się często (nie jest to jedyny sposób postępowania) następujący algorytm działania (zob. np. [27, 28, 32, 33]): Tworzy się model matematyczny, zwykle w postaci odpowiedniego równania różniczkowego. Dokonujemy linearyzacji. Projektujemy układ sterowania, np. poprzez odpowiednie sprzężenie zwrotne. Zwykle formułując odpowiedni problem LQ (problem liniowo kwadratowy). Dokonujemy weryfikacji naszych działań na obiekcie rzeczywistym. Praktycznie na każdym etapie można przeprowadzać identyfikację parametrów odpowiedniego modelu. Zaprojektowany układ sterowania powinien posiadać odpowiednie własności. Wymagana jest asymptotyczna stabilność (wykładnicza) z odpowiednim obszarem przyciągania (Zasada LaSalle'a [22], s. 64). Wykorzystuje się różne pojęcia stabilność, zwykle w sensie Lapunowa, ([22] s. 34, 61) również praktyczną stabilność ([22] s. 127). Dobrze jest, by zaprojektowany układ zachował typowe własności spotykane w teorii sterowania (np. [26], s. 69, 76, 86, 90), takie jak sterowalność i obserwowalność (stabilizowalność i wykrywalność). Przy sterowaniu komputerowym układ ciągły w czasie współpracuje z urządzeniami pracującymi dyskretnie w czasie (np. z komputerem, sterownikami cyfrowymi, itp.) poprzez odpowiednie przetworniki sygnałów A/C i C/A (przetwornik analogowo-cyfrowy i cyfrowo-analogowy). Przy sterowaniu komputerowym jakość pracy układu zależy od sposobu pracy przetworników A/C i C/A (praca synchroniczna lub praca nie synchroniczna, od wielkości kroku dyskretyzacji czasu, od rozłożenia w przestrzeni poszczególnych urządzeń, itp.). Przy wyznaczaniu parametrów sprzężenia zwrotnego (również dynamicznego) wykorzystuje się odpowiednie równania Lapunowa i Riccatiego (np. [1], lub zob. np. [26,27], [21]), co ma związek z odpowiednimi problemami LQ (np. [17]). Podstawowa filozofia projektowania układów sterowania z wykorzystaniem metody linearyzacji jest zawarta w twierdzeniu Grobmana-Hartmana (np. [35]). Okazuje się, że jeżeli macierz stanu układu liniowego przybliżenia nie posiada wartości własnych na osi urojonych (oczywiście mówimy teraz o przypadku skończenie wymiarowym), to liniowe przybliżenie i układ nieliniowy w pewnym otoczeniu zera zachowuje się ,,podobnie'' (charakter zachowania trajektorii stanu jest taki sam, dokładniej pomiędzy trajektoriami układów istnieje w pewnym otoczeniu zera homeomorfizm, czyli odpowiednie odwzorowanie wzajemnie jednoznaczne). Analizując asymptotyczną stabilność obszar przyciągania do zera można próbować wyznaczać wykorzystując Zasadę LaSalle'a. Praca ma charakter przeglądowy i zawiera wybrane przykłady wcześniej rozważane przez autorów opracowania. Między innymi krótko omówiono: problemy sterowania silnikiem prądu stałego (rozdział 2), problemy sterowania komputerowego (rozdział 3), zagadnienia wspomagania decyzji przy modelowaniu rynku energii elektrycznej z wykorzystaniem teorii gier (rozdział 4), pewien problem optymalizacji kształtu (rozdział 5) z wykorzystaniem Zasady Maksimum Pontryagina ([39]), problemy stabilizacji systemów skończenie i nieskończenie wymiarowych (rozdział 6, 7 i 8). W przedstawionych przykładach wykorzystano różnorodny aparat matematyczny i w konsekwencji różne metody rozwiązania. Słowa kluczowe: matematyka przemysłowa, sterowanie, asymptotyczna stabilność, sprzężenie zwrotne, teoria gier, silnik prądu stałego.Literatura[ 1] M. Athans and P.L. Falb, Sterowanie optymalne: wstęp do teorii i jej zastosowanie, Warszawa WNT, 1969. [ 2] J. Baranowski, Projektowanie obserwatora dla silnika szeregowego prądu stałego, Półrocznik AGH AUTOMATYKA, 10(1): 33–52, 2006. [ 3] J. Baranowski, M. Długosz, Sterowanie czasooptymalne silnikiem obcowzbudnym prądu stałego, In K. Malinowski and L. Rutkowski, editors, Sterowanie i Automatyzacja: Aktualne problemy i ich rozwiązania, chapter 2, pages 87–96, Akademicka Oficyna Wydawnicza EXIT, 2008. [ 3] J. Baranowski, M. Długosz, and W. Mitkowski, Remarks about DC motor control, Archives of Control Sciences, 18(LIV)(3): 289–322, 2008. [ 4] K. Bisztyga, Sterowanie i regulacja silników elektrycznych, WNT, 1989. [ 5] V.G. Boltyanskii, Mathematical Methods of Optimal Control, Holt, Rinehart & Win- ston, New York, 1971. [ 6] J. Brehm, Postdecision changes in the desirability of alternatives, Journal of Ab- normal and Social Psychology, 52: 384–389, 1956. [ 7] A.G. Butkovskii, Sterowanie Optymalne Systemami o Parametrach Rozłożonych (ros.), Nauka, Moskwa, 1965. [ 8] W. Byrski, Obserwacja i sterowanie w systemach dynamicznych, Uczelniane Wy- dawnictwa Naukowo Dydaktyczne AGH, Kraków, 2007. [ 9] J. Chiasson, Nonlinear Differential-Geometric Techniques for Control of a Series DC Motor, IEEE Transactions on Conrol Systems Technology, 2(1): 35–42, March 1994. [10] T. Damm, V. Dragan and G. Freiling, Lyapunov Iterations for Coupled Riccati Differential Equations Arising in Connection with Nash Differential Games, Mathematical Reports, 9(59): 35–46, 2007. [11] M. Długosz, Problemy optymalizacji układów napędowych w automatyce i robotyce, PhD thesis, Akademia Górniczo-Hutnicza im. S. Staszica w Krakowie, 2009. [12] M. Długosz and T. Lerch, Komputerowa identyfikacja parametrów silnika prądu stałego, Przegląd Elektrotechniczny, 86(2): 34–38, 2010. [13] J.C. Engwerda, Algorithms for computing Nash equilibria in deterministic LQ games, Computational Management Science, 4(2):113–140, 2007. [14] M. Ganobis, Electricity Market Modelling Using Dynamic LQ Games, In: Materiały XII Międzynarodowych Warsztatów Doktoranckich OWD w Wisle, pages 75–80, 2010. [15] M. Ganobis and W. Mitkowski, A Nash equilibrium in RC transmission line with two voltage sources, Materiały XXXII Międzynarodowej konferencji z podstaw elektrotechniki i teorii obwodów IC-SPETO, pages 117–118, 2009. [16] H. Górecki, S. Fuksa, A. Korytowski and W. Mitkowski, Sterowanie optymalne w systemach liniowych z kwadratowym wskaźnikiem jakości, PWN, Warszawa, 1983. [17] A. Guran, A. Bajaj, Y. Ishida, N. Perkins, G. D’Eleuterio and C. Pierre, Stability of Gyroscopic Systems – Series on Stability, Vibration and Control of Systems, vol. 2, World Scientific Publishing, Singapore, 1999. [18] Y.-C. Ho and A. Starr, Nonzero-sum Differential Games, Journal of Optimization Theory and Applications, 3: 184–206, 1969. [19] E. Kącki, Równania Różniczkowe Cząstkowe w Elektrotechnice, Wydawnictwa Nau- kowo-Techniczne, 1971. [21] P. Lancaster and L. Rodman, Algebraic Riccati Equations, Clarendon Press, Oxford, 1995. [22] J. LaSalle and S. Lefschetz, Zarys teorii stabilności Lapunowa i jego metody bezpo- średniej, PWN, Warszawa, 1966. [23] W. Leonhard, Control of Electrical Drives 3rd edition, Springer-Verlag Berlin and Heidelberg NewYork, Berlin, 3 editing, 2001. [24] S. Mitkowski, Nonlinear Electric Circuits, Wydawnictwa AGH, Kraków, 1999. [25] W. Mitkowski, Stabilizacja liniowych układów nieskończenie wymiarowych za pomocą dynamicznego sprzężenia zwrotnego, Arch. Automatyki i Telemechaniki, 33(4):515–528, 1988. [26] W. Mitkowski, Stabilizacja Systemów Dynamicznych, WNT Warszawa, 1991. [27] W. Mitkowski, Projektowanie systemów sterowania z wykorzystaniem równania Riccatiego, In Z. Bubnicki and J. Józefczyk, editors, Mat. Konferencyjne XIII Krajowej Konferencji Automatyki, volume 1, pages 171–176, Oficyna Wydawnicza Politechniki Opolskiej, 1999. [28] W. Mitkowski, Metody projektowania układów regulacji optymalnej, In Z. Bubnicki and J. Korbicz, editors, XIV Krajowa Konferencja Automatyki, volmu 1, pages 195–204, Uniwersytet Zielonogórski, Inst. Sterowania i Systemów Informatycznych, 2002. [29] W. Mitkowski, Dynamic feedback in LC ladder network, Bulletin of the Polish Academy of Sciences: Technical Sciences, 51(2): 173–180, 2003. [30] W. Mitkowski, Remarks about energy transfer in an RC ladder network, Inter- national Journal of Applied Mathematics and Computer Science, 13(2): 193–198, 2003. [31] W. Mitkowski, Stabilization of LC ladder network, Bulletin of the Polish Academy of Sciences: Technical Sciences, 52(2): 109–114, 2004. [32] W. Mitkowski, Metody stabilizacji, In: Z. Bubnicki and R. Kulikowski and J. Kacprzyk, editors, XV Krajowa Konferencja Automatyki, volume 1, pages 169–178, KaiR PAN, IBS PAN oraz również PW, PIAP, PolSPAiR, 2005. [33] W. Mitkowski, Zastosowania równań liniowych w teorii sterowania. In K. Malinowski and L. Rutkowski, editors, Sterowanie i automatyzacja: aktualne problemy i ich rozwiązania, pages 11–22, Akademicka Oficyna Wydawnicza EXIT, Warszawa 2008. [34] W. Mitkowski and K. Oprzędkiewicz, A Sample Time Optimization Problem in a Digital Control system, In: A. Korytowski, K. Malanowski, W. Mitkowski and M. Szymkat, editor, System Modeling and Optimization 23rd IFIP TC7 Conference, pages 382–396, Springer, Berlin 2009, July 2007. [35] J. Ombach, Wykłady z równań różniczkowych wspomagane komputerowo-Maple, Wydawnicto U.J., 2 edition, 1999. [36] K. Oprzędkiewicz, An example of parabolic system identification, Zeszyty Naukowe AGH, Elektrotechnika, 16(2): 99–106, 1997. [37] W. Pełczewski and M. Krynke, Metoda zmiennych stanu w analize dynamiki układów napędowych, WNT, 1984. [38] L.S. Pontriagin, W.G. Bołtianski, R.W. Gemkrelidze and E.F. Miszczenko, Matematiczeskaja tieoria optimalnych processow, Nauka, Moskwa, 4 edition, 1983. [39] L.S. Pontryagin, V.G. Boltyanskii, R.V. Gamkrelidze and E.F. Mishchenko, The Mathematical Theory of Optimal Processes, John Willey, New York, 1962. [40] P. Skruch, Feedback stabilization of distributed parameter gyroscopic systems, W. Mitkowski and J. Kacprzyk, editors, Modelling Dynamics in Processes and Systems (Studies in Computational Intelligence), vol. 180, pages 85–97, Springer- Verlag, Berlin, Heidelberg, 2009. [41] P. Skruch, J. Baranowski and W. Mitkowski, Dynamic feedback stabilization of non- linear RC ladder network, In: Proceedings of XIII Symposium on Fundamental pro- blems of power electronics electromechanics and mechatronics, PPEEm 2009, Wisła, Poland, pages 136–141, 2009. [42] P. Skruch, W. Mitkowski, Optimum design of shapes using the Pontryagin principle of maximum, Automatyka, 13(1): 65–78, 2009. [43] P. Skruch, W. Mitkowski, Modelling and simulation of the shape optimization pro- blems, In: G.R. Rey and L.M. Muneta, editors, Modelling, Simulation and Optimi- zation, pages 187–208, In-Tech, Olajnica, Croatia, 2010. [44] H. Steinhaus, Między duchem a materią pośredniczy matematyka. Wybór, przed- mowa i redakcja naukowa Józef Łukaszewicz, PWN, Warszawa-Wrocław, 2000. [45] G. Strang, G.J. Fix, An Analysis of the Finite Element Method, Prentice-Hall, En- glewood Cliffs, New York, 1973. [46] G. Szefer, L. Mikulski, Optimization of beams with the use of the Pontryagin prin- ciple of maximum, Archives of Civil Engineering, 24(3): 337–345, 1978. [47] M. Szymkat, A. Korytowski, Evolution of Structure for Direct Control Optimiza- tion, Discussiones Mathematicae. Differential Inclusions, Control and Optimization, 27:165–193, 2007. [48] B. van Aarle, J. Engwerda and J. Plasmans, Cooperative and non-cooperative fi-scal stabilization policies in the EMU, Journal of Economic Dynamics and Control,26(3): 451–481, 2002.
Rapid development of computer science in recent years allowed more detailed analysis and synthesis of control systems for complex processes and supports decision making in different practical areas. Discoveries in mathematical nature of the universe stimulate representatives of technical sciences to actions leading into planned affecting of real objects. Practical verification of engineers ideas in many cases is effective and leads to meaningful results. In control of dynamical systems the following algorithm of operations one has proved to be effective (see for example [27, 28, 32, 33]) Create a mathematical model, usually in a form of an appropriate differential equation. Perform the linearisation of the model. Design a control system, for example through appropriate feedback - usually through formulation of some kind of LQ problem. Verify the design with a real life system. It should be noted however, that control problems are not limited to applications of this algorithm. For example the parameters of the constructed model have to be obtained through the identification. We require that the designed control systems have certain properties. Most notable is the aspect of asymptotic (exponential) stability of the system. Different notions of stability are used, but most popular is the Lyapunov stability, also important is the practical stability. Along with stability also the aspect of area (basin) of attraction is discussed usually in context of LaSalle principle [22] (also known as Krasovskii-LaSalle principle). It is also desired, that the designed control system would possess such typical properties known from control theory as controllability and observability (stabilisability and detectability). In many cases not all needed measurements are available. In such case if system is observable one can construct a state observer - a dynamical system which estimates the unmeasured state variables. In other cases practical realisation of control systems requires application of computers or embedded circuits in real time regimes. In such cases an important aspect is the operation of appropriate A/D (analog/digital) and D/A (digital/analog) converters -- their synchronisation, their sampling frequency. Also the spatial placement of sensors (distance between them) should also be considered. Determination of control signal also is an interesting aspect. In most cases it is desired that the control should have a form of feedback. Often feedback can be designed using appropriate Lyapunov and Riccati equations (see for example [1] or [26, 27, 21]) usually because of the connection to the LQ problem (see [17]) and optimal filtration problem (see for example [9]). In other cases however different methods can be used. Stabilising feedback can be constructed through a construction of appropriate Lyapunov function or by influencing the location of system's eigenvalues. Feedback can also be designed by solving appropriate game theory problem, for example for LQ games. Moreover not all control problems have a structure of feedback -- in some cases control can be given as a function of time (so called open loop control) which will be a solution to certain dynamical optimisation problems (for example time optimal control). In this paper we present a series of examples showing different applications of control theory and game theory to different systems. Substantial part of them are the stabilisation problems but there are also state estimation, identification, optimal control, shape optimisation and decision support through game theory.References[ 1] M. Athans and P.L. Falb, Sterowanie optymalne: wstęp do teorii i jej zastosowanie, Warszawa WNT, 1969.[ 2] J. Baranowski, Projektowanie obserwatora dla silnika szeregowego prądu stałego, Półrocznik AGH AUTOMATYKA, 10(1): 33–52, 2006.[ 3] J. Baranowski, M. Długosz, Sterowanie czasooptymalne silnikiem obcowzbudnym prądu stałego, In K. Malinowski and L. Rutkowski, editors, Sterowanie i Automatyzacja: Aktualne problemy i ich rozwiązania, chapter 2, pages 87–96, Akademicka Oficyna Wydawnicza EXIT, 2008.[ 3] J. Baranowski, M. Długosz, and W. Mitkowski, Remarks about DC motor control, Archives of Control Sciences, 18(LIV)(3): 289–322, 2008.[ 4] K. Bisztyga, Sterowanie i regulacja silników elektrycznych, WNT, 1989.[ 5] V.G. Boltyanskii, Mathematical Methods of Optimal Control, Holt, Rinehart & Win-ston, New York, 1971.[ 6] J. Brehm, Postdecision changes in the desirability of alternatives, Journal of Ab-normal and Social Psychology, 52: 384–389, 1956.[ 7] A.G. Butkovskii, Sterowanie Optymalne Systemami o Parametrach Rozłożonych(ros.), Nauka, Moskwa, 1965.[ 8] W. Byrski, Obserwacja i sterowanie w systemach dynamicznych, Uczelniane Wy-dawnictwa Naukowo Dydaktyczne AGH, Kraków, 2007.[ 9] J. Chiasson, Nonlinear Differential-Geometric Techniques for Control of a SeriesDC Motor, IEEE Transactions on Conrol Systems Technology, 2(1): 35–42, March1994.[10] T. Damm, V. Dragan and G. Freiling, Lyapunov Iterations for Coupled RiccatiDifferential Equations Arising in Connection with Nash Differential Games, Mathematical Reports, 9(59): 35–46, 2007.[11] M. Długosz, Problemy optymalizacji układów napędowych w automatyce i robotyce, PhD thesis, Akademia Górniczo-Hutnicza im. S. Staszica w Krakowie, 2009.[12] M. Długosz and T. Lerch, Komputerowa identyfikacja parametrów silnika prądu stałego, Przegląd Elektrotechniczny, 86(2): 34–38, 2010.[13] J.C. Engwerda, Algorithms for computing Nash equilibria in deterministic LQ games, Computational Management Science, 4(2):113–140, 2007.[14] M. Ganobis, Electricity Market Modelling Using Dynamic LQ Games, In: Materiały XII Międzynarodowych Warsztatów Doktoranckich OWD w Wisle, pages 75–80, 2010.[15] M. Ganobis and W. Mitkowski, A Nash equilibrium in RC transmission line with two voltage sources, Materiały XXXII Międzynarodowej konferencji z podstaw elektrotechniki i teorii obwodów IC-SPETO, pages 117–118, 2009.[16] H. Górecki, S. Fuksa, A. Korytowski and W. Mitkowski, Sterowanie optymalne w systemach liniowych z kwadratowym wskaźnikiem jakości, PWN, Warszawa, 1983.[17] A. Guran, A. Bajaj, Y. Ishida, N. Perkins, G. D’Eleuterio and C. Pierre, Stability of Gyroscopic Systems – Series on Stability, Vibration and Control of Systems, vol. 2, World Scientific Publishing, Singapore, 1999.[18] Y.-C. Ho and A. Starr, Nonzero-sum Differential Games, Journal of Optimization Theory and Applications, 3: 184–206, 1969.[19] E. Kącki, Równania Różniczkowe Cząstkowe w Elektrotechnice, Wydawnictwa Nau-kowo-Techniczne, 1971.[21] P. Lancaster and L. Rodman, Algebraic Riccati Equations, Clarendon Press, Oxford,1995.[22] J. LaSalle and S. Lefschetz, Zarys teorii stabilności Lapunowa i jego metody bezpo-średniej, PWN, Warszawa, 1966.[23] W. Leonhard, Control of Electrical Drives 3rd edition, Springer-Verlag Berlin andHeidelberg NewYork, Berlin, 3 editing, 2001.[24] S. Mitkowski, Nonlinear Electric Circuits, Wydawnictwa AGH, Kraków, 1999.[25] W. Mitkowski, Stabilizacja liniowych układów nieskończenie wymiarowych za pomocą dynamicznego sprzężenia zwrotnego, Arch. Automatyki i Telemechaniki, 33(4):515–528, 1988.[26] W. Mitkowski, Stabilizacja Systemów Dynamicznych, WNT Warszawa, 1991.[27] W. Mitkowski, Projektowanie systemów sterowania z wykorzystaniem równania Riccatiego, In Z. Bubnicki and J. Józefczyk, editors, Mat. Konferencyjne XIII Krajowej Konferencji Automatyki, volume 1, pages 171–176, Oficyna Wydawnicza Politechniki Opolskiej, 1999.[28] W. Mitkowski, Metody projektowania układów regulacji optymalnej, In Z. Bubnickiand J. Korbicz, editors, XIV Krajowa Konferencja Automatyki, volmu 1, pages195–204, Uniwersytet Zielonogórski, Inst. Sterowania i Systemów Informatycznych,2002.[29] W. Mitkowski, Dynamic feedback in LC ladder network, Bulletin of the PolishAcademy of Sciences: Technical Sciences, 51(2): 173–180, 2003.[30] W. Mitkowski, Remarks about energy transfer in an RC ladder network, Inter-national Journal of Applied Mathematics and Computer Science, 13(2): 193–198,2003.[31] W. Mitkowski, Stabilization of LC ladder network, Bulletin of the Polish Academyof Sciences: Technical Sciences, 52(2): 109–114, 2004.[32] W. Mitkowski, Metody stabilizacji, In: Z. Bubnicki and R. Kulikowski and J. Kacprzyk, editors, XV Krajowa Konferencja Automatyki, volume 1, pages 169–178, KaiR PAN, IBS PAN oraz również PW, PIAP, PolSPAiR, 2005.[33] W. Mitkowski, Zastosowania równań liniowych w teorii sterowania. In K. Malinowski and L. Rutkowski, editors, Sterowanie i automatyzacja: aktualne problemy i ich rozwiązania, pages 11–22, Akademicka Oficyna Wydawnicza EXIT, Warszawa 2008.[34] W. Mitkowski and K. Oprzędkiewicz, A Sample Time Optimization Problem in a Digital Control system, In: A. Korytowski, K. Malanowski, W. Mitkowski and M. Szymkat, editor, System Modeling and Optimization 23rd IFIP TC7 Conference, pages 382–396, Springer, Berlin 2009, July 2007.[35] J. Ombach, Wykłady z równań różniczkowych wspomagane komputerowo-Maple,Wydawnicto U.J., 2 edition, 1999.[36] K. Oprzędkiewicz, An example of parabolic system identification, Zeszyty NaukoweAGH, Elektrotechnika, 16(2): 99–106, 1997.[37] W. Pełczewski and M. Krynke, Metoda zmiennych stanu w analize dynamiki układów napędowych, WNT, 1984.[38] L.S. Pontriagin, W.G. Bołtianski, R.W. Gemkrelidze and E.F. Miszczenko, Matematiczeskaja tieoria optimalnych processow, Nauka, Moskwa, 4 edition, 1983.[39] L.S. Pontryagin, V.G. Boltyanskii, R.V. Gamkrelidze and E.F. Mishchenko, The Mathematical Theory of Optimal Processes, John Willey, New York, 1962.[40] P. Skruch, Feedback stabilization of distributed parameter gyroscopic systems, W. Mitkowski and J. Kacprzyk, editors, Modelling Dynamics in Processes andSystems (Studies in Computational Intelligence), vol. 180, pages 85–97, Springer-Verlag, Berlin, Heidelberg, 2009.[41] P. Skruch, J. Baranowski and W. Mitkowski, Dynamic feedback stabilization of non-linear RC ladder network, In: Proceedings of XIII Symposium on Fundamental pro-blems of power electronics electromechanics and mechatronics, PPEEm 2009, Wisła,Poland, pages 136–141, 2009.[42] P. Skruch, W. Mitkowski, Optimum design of shapes using the Pontryagin principleof maximum, Automatyka, 13(1): 65–78, 2009.[43] P. Skruch, W. Mitkowski, Modelling and simulation of the shape optimization pro-blems, In: G.R. Rey and L.M. Muneta, editors, Modelling, Simulation and Optimi-zation, pages 187–208, In-Tech, Olajnica, Croatia, 2010.[44] H. Steinhaus, Między duchem a materią pośredniczy matematyka. Wybór, przed-mowa i redakcja naukowa Józef Łukaszewicz, PWN, Warszawa-Wrocław, 2000.[45] G. Strang, G.J. Fix, An Analysis of the Finite Element Method, Prentice-Hall, En-glewood Cliffs, New York, 1973.[46] G. Szefer, L. Mikulski, Optimization of beams with the use of the Pontryagin prin-ciple of maximum, Archives of Civil Engineering, 24(3): 337–345, 1978.[47] M. Szymkat, A. Korytowski, Evolution of Structure for Direct Control Optimiza-tion, Discussiones Mathematicae. Differential Inclusions, Control and Optimization,27:165–193, 2007.[48] B. van Aarle, J. Engwerda and J. Plasmans, Cooperative and non-cooperative fi-scal stabilization policie
Źródło:
Mathematica Applicanda; 2011, 39, 1
1730-2668
2299-4009
Pojawia się w:
Mathematica Applicanda
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
„Banderia Prutenorum”, czyli poczet chorągwi krzyżackich obalonych piórem Jerzego z Krakowa
'Banderia Prutenorum', or a fellowship of Teutonic flags, overthrown by the pen of Jerzy from Krakow
Autorzy:
Mazurkiewicz, Roman
Powiązania:
https://bibliotekanauki.pl/articles/1036376.pdf
Data publikacji:
2020-12-20
Wydawca:
Uniwersytet Pedagogiczny im. Komisji Edukacji Narodowej w Krakowie
Tematy:
Banderia Prutenorum
Teutonic Order
the battle of Grunwald
Jan Długosz
Jerzy Harasymowicz
Opis:
The paper is dedicated to the volume of poems by Jerzy Harasymowicz, entitled 'Banderia Prutenorum' (1976). The author explores the dependence of this volume on a work of the same title, which was released in mid-15th century through the initiative of Jan Długosz. The medieval manuscript contains illustrations and short descriptions of 56 Teutonic flags captured by Polish troops in the battle of Grunwald (1410). The author of these pictures was Stanisław Durink, while the descriptions were made by Jan Długosz, among other authors. Using the illustrations of Teutonic flags from the medieval model, Harasymowicz added his own poems, showing in bad light particular troops (flags) of the Teutonic Order, as well as their great defeat in the battle against Polish‑Lithuanian forces. The author of the paper analyses the ideological‑persuasive meaning of these poems, as well as their language and depiction.  
Źródło:
Annales Universitatis Paedagogicae Cracoviensis. Studia Historicolitteraria; 2020, 20; 305-319
2081-1853
Pojawia się w:
Annales Universitatis Paedagogicae Cracoviensis. Studia Historicolitteraria
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-12 z 12

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies