Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Bayesian classifier" wg kryterium: Wszystkie pola


Wyświetlanie 1-9 z 9
Tytuł:
Approach to predict product quality considering current customers’ expectations
Autorzy:
Siwiec, Dominika
Pacana, Andrzej
Bednárová, Lucia
Powiązania:
https://bibliotekanauki.pl/articles/27313593.pdf
Data publikacji:
2022
Wydawca:
Politechnika Śląska. Wydawnictwo Politechniki Śląskiej
Tematy:
predict
product quality
decision support
naïve Bayesian classifier
weighted sum model
customer expectations
przewidywanie
jakość produktu
wspomaganie decyzji
naiwny klasyfikator Bayesa
metoda sumy ważonej
oczekiwania klientów
Opis:
Purpose: The purpose was to develop an approach to predict product quality considering current customers' expectations. Design/methodology/approach: The approach includes integrated techniques, i.e.: SMART(-ER) method, a questionnaire with the Likert scale, brainstorming (B&M), WSM method, and Naïve Bayes Classifier. This approach refers to obtaining customers' expectations for satisfaction from the current quality of products and the importance of these criteria. Based on the satisfaction of customers, the quality of the product was estimated and classified. Then, the quality of the product was predicted for current customers. Findings: It was shown that it is possible to predict product quality based on current customer expectations, and so based on the current existing product. Research limitations/implications: The proposed approach does not include the possibilities of determining the expected quality of the product. The approach focuses on predicting customers' satisfaction with the current quality of the product. Therefore, if there is a need for improvement actions, further analyzes should be carried out to determine which criteria should be modified and how. Practical implications: The presented approach can be used for any product. Therefore, it is a useful tool for any kind of organization, which strives to meet customer satisfaction. Despite the possibility to predict the quality of the product, the proposed approach can indicate at an early stage to the organization that it is necessary to make improvement actions. Social implications: It is possible to reduce the waste of resources by predicting that improvement actions are necessary. Moreover, the approach supports an entity (e.g., expert, enterprise, interested parties) in predicting current customers' satisfaction. Originality/value: Originality is predicting product quality based on current customers' expectations. A new combination of quality management techniques, decision support, and machine learning was implemented.
Źródło:
Zeszyty Naukowe. Organizacja i Zarządzanie / Politechnika Śląska; 2022, 155; 461--472
1641-3466
Pojawia się w:
Zeszyty Naukowe. Organizacja i Zarządzanie / Politechnika Śląska
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Diagnosing faults in the timing system of a passenger car spark ignition engine using the bayes classifier and entropy of vibration signals
Autorzy:
Czech, Piotr
Powiązania:
https://bibliotekanauki.pl/articles/2203067.pdf
Data publikacji:
2022
Wydawca:
Politechnika Śląska. Wydawnictwo Politechniki Śląskiej
Tematy:
internal combustion engines
diagnostics
Bayesian classifier
pattern recognition
spark-ignition internal combustion engine
exhaust valve of the internal combustion engine
silniki spalinowe
diagnostyka
klasyfikator bayesowski
rozpoznawanie wzorca
silnik spalinowy z zapłonem iskrowym
zawór wydechowy silnika spalinowego
Opis:
Today's systems for diagnosing the technical condition of machines, including vehicles, use very advanced methods of acquiring and processing input data. Presently, work is being conducted globally to solve related problems. At the moment, it is not yet possible to create a single procedure that would enable the construction of a properly functioning diagnostic system, regardless of the selected object to be diagnosed. Hence, there is a need to conduct further research into the possibility of using already developed methods, as well as their modification to other diagnostic cases. This article presents the results of research related to the use of the Bayes classifier for diagnosing the technical condition of passenger car engine components. Damage to the exhaust valve of a spark ignition engine was diagnosed. The source of information on the technical condition was vibration signals recorded at various measuring points and under different operating conditions of the car. To describe the nature of changes in the vibration signals, the entropy measures were determined for the decomposed signal using the discrete wavelet transform is proposed.
Źródło:
Zeszyty Naukowe. Transport / Politechnika Śląska; 2022, 116; 83--98
0209-3324
2450-1549
Pojawia się w:
Zeszyty Naukowe. Transport / Politechnika Śląska
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A source discrimination method of mine water-inrush based on 3D spatial interpolation of rare classes
Analiza dyskryminacyjna źródeł wycieków wody do kopalni na podstawie trójwymiarowej interpolacji danych o zdarzeniach rzadkich
Autorzy:
Jiang, Qiong
Zhao, Weidong
Zheng, Yong
Wei, Jiajia
Wei, Chao
Powiązania:
https://bibliotekanauki.pl/articles/219790.pdf
Data publikacji:
2019
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
analiza dyskryminacyjna źródeł wycieków
wyciek wód
jakość wód
kryterium Bayesowskie
kategoria zdarzeń rzadkich
source discrimination
water inrush
water quality
Bayesian classifier
rare class
Opis:
When the distribution of water quality samples is roughly balanced, the Bayesian criterion model of water-inrush source generally can obtain relatively accurate results of water-inrush source identification. However, it is often difficult to achieve desired classification results when training samples are imbalanced. Sample imbalance is common in the source identification of mine water-inrush. Therefore, we propose a three-dimensional (3D) spatial resampling method based on rare water quality samples, which achieves the balance of water quality samples. Based on the virtual water sample points distributed by the 3D grid, the method uses the 3D Inverse Distance Weighting (IDW) method to interpolate the groundwater ion concentration of the virtual water samples to achieve oversampling of rare water samples. Case study in Gubei Coal Mine shows that the method improves overall discriminant accuracy of the Bayesian criterion model by 5.26%, from 85.26% to 90.69%. In particular, the discriminative precision of the rare class is improved from 0% to 83.33%, which indicates that the method can improve the discriminant accuracy of the rare class to large extent. In addition, this method increases the Kappa coefficient of the model by 19.92%, from 52.26% to 72.19%, increasing the degree of consistency from “general” to “significant”. Our research is of significance to enriching and improving the theory of prevention and treatment of mine water damage.
W przypadku zrównoważonych danych o jakościowym rozkładzie próbek, zastosowanie kryterium Bayesowskiego do modelowania źródeł wycieków daje stosunkowo dokładne wyniki w analizie dyskryminacyjnej źródeł wycieków wody kopalnianej. Jednakże w przypadku niezrównoważonych danych, pożądane efekty kategoryzacji są niezmiernie trudne do uzyskania. Dane o składzie próbek są w znacznej mierze niezrównoważone, i jest to powszechny problem napotykany przy identyfikacji źródeł wycieków. W obecnej pracy zaproponowano więc trójwymiarową (3D) metodę powtórnego próbkowania z wykorzy-staniem próbek wód z kategorii zdarzeń rzadkich, tak by uzyskać zrównoważony zbiór danych. W oparciu o wirtualne punkty na trójwymiarowej siatce, wykorzystano trójwymiarową metodęśredniej ważonej odległością (Inverse Distance Weighing – IDW) do interpolacji stężenia jonów w wodach gruntowych w wirtualnych próbkach wody, w celu nadpróbkowania dla kategorii zdarzeń rzadkich. Studium przypadku kopalni węgla Gubei pokazuje, że metoda poprawia dokładność dopasowania modelu w oparciu o kryterium Bayesowskie o 5.25% (z 85.26% na 90.96 %). W szczególności, dokładność rozróżniania i dyskryminacji próbek należących do kategorii zdarzeń rzadkich wzrasta od 0% do 83.33%, co oznacza bardzo znaczna poprawę. Ponadto, wartość współczynnika Kappa wzrasta o 19.92%, od 52.26 % do 72.19%, tym samym podnosząc poziom zgodności metody z poziomu ogólnego na „znaczący”. Prowadzone przez nas badania mają poważne znaczenie z punktu widzenia udoskonalenia teorii leżących u podstaw metod i technik zapobiegania i kontroli wycieków wód kopalnianych.
Źródło:
Archives of Mining Sciences; 2019, 64, 2; 321-333
0860-7001
Pojawia się w:
Archives of Mining Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Spatial and temporal aspects of prior and likelihood data choices for Bayesian models in road traffic safety analyses
Przestrzenny i czasowy aspekt wyboru rozkładów apriorycznych i danych dla funkcji wiarygodności dla modeli bayesowskich w analizach bezpieczeństwa ruchu drogowego
Autorzy:
Nowakowska, M.
Powiązania:
https://bibliotekanauki.pl/articles/1365610.pdf
Data publikacji:
2017
Wydawca:
Polska Akademia Nauk. Polskie Naukowo-Techniczne Towarzystwo Eksploatacyjne PAN
Tematy:
Bayesian regression model
informative prior distributions for model parameters
likelihood data
statistical classifier
road accident severity
road accident features
model regresji bayesowskiej
informatywne rozkłady aprioryczne parametrów modelu
wiarygodność bayesowska
klasyfikator statystyczny
status wypadku drogowego
cechy wypadku drogowego
Opis:
In a Bayesian regression model, parameters are not constants, but random variables described by some posterior distributions. In order to define such a distribution, two pieces of information are combined: (1) a prior distribution that represents previous knowledge about a model parameter and (2) a likelihood function that updates prior knowledge. Both elements are analysed in terms of implementing the Bayesian approach in road safety analyses. A Bayesian multiple logistic regression model that classifies road accident severity is investigated. Three groups of input variables have been considered in the model: accident location characteristics, at fault driver’s features and accident attributes. Since road accidents are scattered in space and time, two aspects of information source choices in the Bayesian modelling procedure are proposed and discussed: spatial and temporal ones. In both aspects, priors are based on selected data that generate background knowledge about model parameters – thus, prior knowledge has an informative property. Bayesian likelihoods which modify priors are data that deliver: (1) information specific to a road – in the spatial aspect or (2) the latest information – in the temporal aspect. The research experiments were conducted to illustrate the approach and some conclusions have been drawn.
Parametry bayesowskiego modelu regresji nie są wartościami stałymi tylko zmiennymi losowymi opisanymi przez pewne rozkłady aposterioryczne. W celu zdefiniowania takiego rozkładu łączy się dwa źródła informacji: (1) rozkład aprioryczny, który reprezentuje wcześniejszą wiedzę o parametrze modelu oraz (2) funkcję wiarygodności (wiarygodność bayesowską), która uaktualnia wiedzę a’priori. Oba te elementy są przedmiotem badań w kontekście wykorzystania podejścia bayesowskiego w analizach bezpieczeństwa ruchu drogowego. Badaniom podlega model wielokrotnej regresji logistycznej, który klasyfikuje status zdarzenia drogowego. W modelu uwzględniono trzy grupy zmiennych objaśniających: charakterystyki miejsca lokalizacji wypadku, cechy kierującego sprawcy oraz atrybuty wypadku. Ponieważ wypadki drogowe są rozproszone w czasie i przestrzeni, zaproponowano i poddano dyskusji dwa aspekty wyboru źródeł informacji w procedurze modelowania bayesowskiego: czasowy i przestrzenny. W obu podejściach rozkłady aprioryczne są definiowane na podstawie danych wybranych jako te, które generują uogólnioną wiedzę o parametrach modelu, tworząc tło podlegające modyfikacji – w ten sposób wiedza aprioryczna ma cechę informatywności. Wiarygodność bayesowska, modyfikująca rozkłady a’priori, jest definiowana za pomocą danych wprowadzających: (1) informację specyficzną dla wybranej drogi – w przypadku aspektu przestrzennego lub (2) informację najnowszą – w przypadku aspektu czasowego. Zaproponowane podejście zilustrowano w eksperymentach badawczych i przedstawiono wynikające z nich wnioski.
Źródło:
Eksploatacja i Niezawodność; 2017, 19, 1; 68-75
1507-2711
Pojawia się w:
Eksploatacja i Niezawodność
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Application of Time-Series Analysis for Predicting Defects in Continuous Steel Casting Process
Autorzy:
Rodziewicz, A.
Perzyk, M.
Powiązania:
https://bibliotekanauki.pl/articles/380643.pdf
Data publikacji:
2016
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
information technology
foundry industry
quality management
continuous steel casting
time series analysis
naïve Bayesian classifier
technologia informatyczna
przemysł odlewniczy
zarządzanie jakością
ciągłe odlewanie stali
analiza szeregów czasowych
naiwny klasyfikator Bayesa
Opis:
The purpose of this paper was testing suitability of the time-series analysis for quality control of the continuous steel casting process in production conditions. The analysis was carried out on industrial data collected in one of Polish steel plants. The production data concerned defective fractions of billets obtained in the process. The procedure of the industrial data preparation is presented. The computations for the time-series analysis were carried out in two ways, both using the authors’ own software. The first one, applied to the real numbers type of the data has a wide range of capabilities, including not only prediction of the future values but also detection of important periodicity in data. In the second approach the data were assumed in a binary (categorical) form, i.e. the every heat(melt) was labeled as ‘Good’ or ‘Defective’. The naïve Bayesian classifier was used for predicting the successive values. The most interesting results of the analysis include good prediction accuracies obtained by both methodologies, the crucial influence of the last preceding point on the predicted result for the real data time-series analysis as well as obtaining an information about the type of misclassification for binary data. The possibility of prediction of the future values can be used by engineering or operational staff with an expert knowledge to decrease fraction of defective products by taking appropriate action when the forthcoming period is identified as critical.
Źródło:
Archives of Foundry Engineering; 2016, 16, 4; 125-130
1897-3310
2299-2944
Pojawia się w:
Archives of Foundry Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Modele regresji Bayesa w analizach bezpieczeństwa ruchu drogowego
Bayesian regression models in the analyses of road traffic safety
Autorzy:
Nowakowska, M.
Powiązania:
https://bibliotekanauki.pl/articles/144202.pdf
Data publikacji:
2016
Wydawca:
Stowarzyszenie Inżynierów i Techników Komunikacji Rzeczpospolitej Polskiej
Tematy:
Bayesian regression
regresja Bayesa
aprioryczne rozkłady parametrów modelu
klasyfikator statystyczny
ciężkość wypadku drogowego
kierujący sprawca wypadku
model parameters prior distributions
statistical classifier
road accident severity
at fault driver
Opis:
W artykule przybliżono koncepcję modelu regresji Bayesa oraz przedstawiono wykorzystanie tego modelu w budowaniu statystycznego klasyfikatora ciężkości wypadku drogowego w zależności od cech kierującego – sprawcy. Modele Bayesa zostały wyznaczone na dużej i małej próbie treningowej z uwzględnieniem informatywnych i nieinformatywnych rozkładów a’priori parametrów strukturalnych oraz porównane z analogicznymi modelami klasycznymi MLE. Przedmiotowym klasyfikatorem statystycznym był model regresji logistycznej.
The idea of a Bayes regression model was put forward and then the utilization of such a model while building a statistical classifier to identify a road accident severity in dependence on chosen at fault driver’s characteristics was presented in the paper. Bayes models were identified for small and big train samples assuming informative and non-informative prior distributions for structural parameters of the models. Obtained results were compared and referred to the results of classical MLE models. A logistic model was a statistical classifier under consideration.
Źródło:
Drogownictwo; 2016, 2; 39-45
0012-6357
Pojawia się w:
Drogownictwo
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Learning the naive Bayes classifier with optimization models
Autorzy:
Taheri, S.
Mammadov, M.
Powiązania:
https://bibliotekanauki.pl/articles/908351.pdf
Data publikacji:
2013
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
Bayesian networks
naive Bayes classifier
optimization
discretization
sieci bayesowskie
naiwny klasyfikator Bayesa
optymalizacja
dyskretyzacja
Opis:
Naive Bayes is among the simplest probabilistic classifiers. It often performs surprisingly well in many real world applications, despite the strong assumption that all features are conditionally independent given the class. In the learning process of this classifier with the known structure, class probabilities and conditional probabilities are calculated using training data, and then values of these probabilities are used to classify new observations. In this paper, we introduce three novel optimization models for the naive Bayes classifier where both class probabilities and conditional probabilities are considered as variables. The values of these variables are found by solving the corresponding optimization problems. Numerical experiments are conducted on several real world binary classification data sets, where continuous features are discretized by applying three different methods. The performances of these models are compared with the naive Bayes classifier, tree augmented naive Bayes, the SVM, C4.5 and the nearest neighbor classifier. The obtained results demonstrate that the proposed models can significantly improve the performance of the naive Bayes classifier, yet at the same time maintain its simple structure.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2013, 23, 4; 787-795
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Handling the description noise using an attribute value ontology
Autorzy:
Łukaszewski, T.
Józefowska, J.
Ławrynowicz, A.
Józefowski, Ł.
Powiązania:
https://bibliotekanauki.pl/articles/206376.pdf
Data publikacji:
2011
Wydawca:
Polska Akademia Nauk. Instytut Badań Systemowych PAN
Tematy:
imprecise descriptions
attribute noise
ontology
naďve Bayesian classifier
Opis:
The quality of any classifier depends on a number of factors, including the quality of training data. In real-world scenarios, data are often noisy. One reason for noisy data (erroneous values) is in the representation language, insufficient to model different levels of knowledge granularity. In this paper, to address the problem of such description noise, we propose a novel extension of the na've Bayesian classifier by an attribute value ontology (AVO). In the proposed approach, every attribute is a hierarchy of concepts from the domain knowledge base. In this way an example is described either very precisely (using a concept from the low-level of the hierarchy) or, when it is not possible, in a more general way (using a concept from higher levels of the hierarchy). Our general strategy is to classify a new example using training examples described in the same way or more precisely at lower levels of knowledge granularity. Hence, the hierarchy introduces a bias which in effect can contribute to improvement of a classification.
Źródło:
Control and Cybernetics; 2011, 40, 2; 275-292
0324-8569
Pojawia się w:
Control and Cybernetics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Cross-selling models for telecommunication services
Autorzy:
Jaroszewicz, S.
Powiązania:
https://bibliotekanauki.pl/articles/308093.pdf
Data publikacji:
2008
Wydawca:
Instytut Łączności - Państwowy Instytut Badawczy
Tematy:
cross-selling
telecommunication service
classifier
association rule
Bayesian network
Opis:
Cross-selling is a strategy of selling new products to a customer who has made other purchases earlier. Except for the obvious profit from extra products sold, it also increases the dependence of the customer on the vendor and therefore reduces churn. This is especially important in the area of telecommunications, characterized by high volatility and low customer loyalty. The paper presents two cross-selling approaches: one based on classifiers and another one based on Bayesian networks constructed based on interesting association rules. Effectiveness of the methods is validated on synthetic test data.
Źródło:
Journal of Telecommunications and Information Technology; 2008, 3; 52-59
1509-4553
1899-8852
Pojawia się w:
Journal of Telecommunications and Information Technology
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-9 z 9

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies