Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "2-edge-connected" wg kryterium: Wszystkie pola


Wyświetlanie 1-6 z 6
Tytuł:
Conflict-Free Connections of Graphs
Autorzy:
Czap, Július
Jendroľ, Stanislav
Valiska, Juraj
Powiązania:
https://bibliotekanauki.pl/articles/31342254.pdf
Data publikacji:
2018-11-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
edge-coloring
conflict-free connection
2-edge-connected graph
tree
Opis:
An edge-colored graph G is conflict-free connected if any two of its vertices are connected by a path, which contains a color used on exactly one of its edges. In this paper the question for the smallest number of colors needed for a coloring of edges of G in order to make it conflict-free connected is investigated. We show that the answer is easy for 2-edge-connected graphs and very difficult for other connected graphs, including trees.
Źródło:
Discussiones Mathematicae Graph Theory; 2018, 38, 4; 911-920
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A Degree Condition Implying Ore-Type Condition for Even [2, b]-Factors in Graphs
Autorzy:
Tsuchiya, Shoichi
Yashima, Takamasa
Powiązania:
https://bibliotekanauki.pl/articles/31341635.pdf
Data publikacji:
2017-08-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
[ a, b ]-factor
even factor
2-edge-connected
minimum degree
Opis:
For a graph $G$ and even integers $ b \ge a \ge 2 $, a spanning subgraph $F$ of $G$ such that $ a \le \text{deg}_F (x) \le b $ and $ \text{deg}_F (x) $ is even for all $ x \in V (F) $ is called an even $[a, b]$-factor of $G$. In this paper, we show that a 2-edge-connected graph $G$ of order $n$ has an even $[2, b]$-factor if $ \text{max} \{ \text{deg}_G (x) , \text{deg}_G (y) \} \ge \text{max} \{ \frac{2n}{2+b} , 3 \} $ for any nonadjacent vertices $x$ and $y$ of $G$. Moreover, we show that for $ b \ge 3a$ and $a > 2$, there exists an infinite family of 2-edge-connected graphs $G$ of order $n$ with $ \delta (G) \ge a$ such that $G$ satisfies the condition $ \text{deg}_G (x) + \text{deg}_G (y) > \frac{2an}{a+b} $ for any nonadjacent vertices $x$ and $y$ of $G$, but has no even $[a, b]$-factors. In particular, the infinite family of graphs gives a counterexample to the conjecture of Matsuda on the existence of an even $[a, b]$-factor.
Źródło:
Discussiones Mathematicae Graph Theory; 2017, 37, 3; 797-809
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Edge-Connectivity and Edges of Even Factors of Graphs
Autorzy:
Haghparast, Nastaran
Kiani, Dariush
Powiązania:
https://bibliotekanauki.pl/articles/31343450.pdf
Data publikacji:
2019-05-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
3-edge-connected graph
2-edge-connected graph
even factor
component
Opis:
An even factor of a graph is a spanning subgraph in which each vertex has a positive even degree. Jackson and Yoshimoto showed that if G is a 3-edge-connected graph with |G| ≥ 5 and v is a vertex with degree 3, then G has an even factor F containing two given edges incident with v in which each component has order at least 5. We prove that this theorem is satisfied for each pair of adjacent edges. Also, we show that each 3-edge-connected graph has an even factor F containing two given edges e and f such that every component containing neither e nor f has order at least 5. But we construct infinitely many 3-edge-connected graphs that do not have an even factor F containing two arbitrary prescribed edges in which each component has order at least 5.
Źródło:
Discussiones Mathematicae Graph Theory; 2019, 39, 2; 357-364
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Sufficient Conditions for Maximally Edge-Connected and Super-Edge-Connected Graphs Depending on The Clique Number
Autorzy:
Volkmann, Lutz
Powiązania:
https://bibliotekanauki.pl/articles/31343389.pdf
Data publikacji:
2019-05-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
edge-connectivity
clique number
maximally edge-connected graphs
super-edge-connected graphs
Opis:
Let G be a connected graph with minimum degree δ and edge-connectivity λ. A graph is maximally edge-connected if λ = δ, and it is super-edgeconnected if every minimum edge-cut is trivial; that is, if every minimum edge-cut consists of edges incident with a vertex of minimum degree. The clique number ω(G) of a graph G is the maximum cardinality of a complete subgraph of G. In this paper, we show that a connected graph G with clique number ω(G) ≤ r is maximally edge-connected or super-edge-connected if the number of edges is large enough. These are generalizations of corresponding results for triangle-free graphs by Volkmann and Hong in 2017.
Źródło:
Discussiones Mathematicae Graph Theory; 2019, 39, 2; 567-573
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Edge cycle extendable graphs
Autorzy:
McKee, Terry
Powiązania:
https://bibliotekanauki.pl/articles/743340.pdf
Data publikacji:
2012
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
cycle extendable graph
chordal graph
chordless graph
minimally 2-connected graph
Opis:
A graph is edge cycle extendable if every cycle C that is formed from edges and one chord of a larger cycle C⁺ is also formed from edges and one chord of a cycle C' of length one greater than C with V(C') ⊆ V(C⁺). Edge cycle extendable graphs are characterized by every block being either chordal (every nontriangular cycle has a chord) or chordless (no nontriangular cycle has a chord); equivalently, every chord of a cycle of length five or more has a noncrossing chord.
Źródło:
Discussiones Mathematicae Graph Theory; 2012, 32, 2; 373-378
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Removable Edges on a Hamilton Cycle or Outside a Cycle in a 4-Connected Graph
Autorzy:
Wu, Jichang
Broersma, Hajo
Mao, Yaping
Ma, Qin
Powiązania:
https://bibliotekanauki.pl/articles/32083895.pdf
Data publikacji:
2021-05-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
4-connected graph
removable edge
fragment
atom
Opis:
Let G be a 4-connected graph. We call an edge e of G removable if the following sequence of operations results in a 4-connected graph: delete e from G; if there are vertices with degree 3 in G−e, then for each (of the at most two) such vertex x, delete x from G − e and turn the three neighbors of x into a clique by adding any missing edges (avoiding multiple edges). In this paper, we continue the study on the distribution of removable edges in a 4-connected graph G, in particular outside a cycle of G or in a spanning tree or on a Hamilton cycle of G. We give examples to show that our results are in some sense best possible.
Źródło:
Discussiones Mathematicae Graph Theory; 2021, 41, 2; 559-587
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-6 z 6

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies