Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "(strong) chromatic index" wg kryterium: Wszystkie pola


Wyświetlanie 1-7 z 7
Tytuł:
Strong chromatic index of planar graphs with large girth
Autorzy:
Jennhwa Chang, Gerard
Montassier, Mickael
Pêche, Arnaud
Raspaud, André
Powiązania:
https://bibliotekanauki.pl/articles/30148715.pdf
Data publikacji:
2014-11-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
planar graphs
edge coloring
2-distance coloring
strong edgecoloring
Opis:
Let Δ ≥ 4 be an integer. In this note, we prove that every planar graph with maximum degree Δ and girth at least 10Δ+46 is strong (2Δ−1)-edgecolorable, that is best possible (in terms of number of colors) as soon as G contains two adjacent vertices of degree Δ. This improves [6] when Δ ≥ 6.
Źródło:
Discussiones Mathematicae Graph Theory; 2014, 34, 4; 723-733
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Upper Bounds for the Strong Chromatic Index of Halin Graphs
Autorzy:
Hu, Ziyu
Lih, Ko-Wei
Liu, Daphne Der-Fen
Powiązania:
https://bibliotekanauki.pl/articles/16647759.pdf
Data publikacji:
2018-02-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
strong edge-coloring
strong chromatic index
Halin graphs
Opis:
The strong chromatic index of a graph G, denoted by χ′s(G), is the minimum number of vertex induced matchings needed to partition the edge set of G. Let T be a tree without vertices of degree 2 and have at least one vertex of degree greater than 2. We construct a Halin graph G by drawing T on the plane and then drawing a cycle C connecting all its leaves in such a way that C forms the boundary of the unbounded face. We call T the characteristic tree of G. Let G denote a Halin graph with maximum degree Δ and characteristic tree T. We prove that χ′s(G) ⩽ 2Δ + 1 when Δ ⩾ 4. In addition, we show that if Δ = 4 and G is not a wheel, then χ′s(G) ⩽ χ′s(T) + 2. A similar result for Δ = 3 was established by Lih and Liu [21].
Źródło:
Discussiones Mathematicae Graph Theory; 2018, 38, 1; 5-26
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Upper Bounds for the Strong Chromatic Index of Halin Graphs
Autorzy:
Hu, Ziyu
Lih, Ko-Wei
Liu, Daphne Der-Fen
Powiązania:
https://bibliotekanauki.pl/articles/31342445.pdf
Data publikacji:
2018-02-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
strong edge-coloring
strong chromatic index
Halin graphs
Opis:
The strong chromatic index of a graph $G$, denoted by $ \chi_s^′ (G) $, is the minimum number of vertex induced matchings needed to partition the edge set of $G$. Let $T$ be a tree without vertices of degree 2 and have at least one vertex of degree greater than 2. We construct a Halin graph $G$ by drawing $T$ on the plane and then drawing a cycle $C$ connecting all its leaves in such a way that $C$ forms the boundary of the unbounded face. We call $T$ the characteristic tree of $G$. Let $G$ denote a Halin graph with maximum degree $ \Delta $ and characteristic tree $T$. We prove that $ \chi_s^′ (G) \le 2 \Delta + 1 $ when $ \Delta \ge 4 $. In addition, we show that if $ \Delta = 4 $ and $G$ is not a wheel, then $ \chi_s^′ (G) \le \chi_s^′ (T) + 2 $. A similar result for $ \Delta = 3 $ was established by Lih and Liu [21].
Źródło:
Discussiones Mathematicae Graph Theory; 2018, 38, 1; 5-26
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Some maximum multigraphs and edge/vertex distance colourings
Autorzy:
Skupień, Zdzisław
Powiązania:
https://bibliotekanauki.pl/articles/971931.pdf
Data publikacji:
1995
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
(strong) chromatic index
chromatic number
matching
hypercube
error-correcting code
asymptotics
Opis:
Shannon-Vizing-type problems concerning the upper bound for a distance chromatic index of multigraphs G in terms of the maximum degree Δ(G) are studied. Conjectures generalizing those related to the strong chromatic index are presented. The chromatic d-index and chromatic d-number of paths, cycles, trees and some hypercubes are determined. Among hypercubes, however, the exact order of their growth is found.
Źródło:
Discussiones Mathematicae Graph Theory; 1995, 15, 1; 89-106
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Strong Edge-Coloring Of Planar Graphs
Autorzy:
Song, Wen-Yao
Miao, Lian-Ying
Powiązania:
https://bibliotekanauki.pl/articles/31341618.pdf
Data publikacji:
2017-11-27
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
strong edge-coloring
strong chromatic index
planar graph
dis- charging method
Opis:
A strong edge-coloring of a graph is a proper edge-coloring where each color class induces a matching. We denote by $ \chi_s^' (G) $ the strong chromatic index of $G$ which is the smallest integer $k$ such that $G$ can be strongly edge-colored with $k$ colors. It is known that every planar graph $G$ has a strong edge-coloring with at most $ 4 \Delta (G) + 4 $ colors [R.J. Faudree, A. Gyárfás, R.H. Schelp and Zs. Tuza, The strong chromatic index of graphs, Ars Combin. 29B (1990) 205–211]. In this paper, we show that if $G$ is a planar graph with $ g \ge 5$, then $ \chi_s^' (G) \le 4 \Delta (G) − 2 $ when $ \Delta (G) \ge 6 $ and $ \chi_s^' (G) \le 19 $ when $ \Delta (G) = 5 $, where $g$ is the girth of $G$.
Źródło:
Discussiones Mathematicae Graph Theory; 2017, 37, 4; 845-857
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Three edge-coloring conjectures
Autorzy:
Schelp, Richard
Powiązania:
https://bibliotekanauki.pl/articles/743559.pdf
Data publikacji:
2002
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
edge-coloring
Ramsey number
vertex-distinguishing edge-coloring
strong chromatic index
balanced edge-coloring
local coloring
mean coloring
Opis:
The focus of this article is on three of the author's open conjectures. The article itself surveys results relating to the conjectures and shows where the conjectures are known to hold.
Źródło:
Discussiones Mathematicae Graph Theory; 2002, 22, 1; 173-182
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
On Proper (Strong) Rainbow Connection of Graphs
Autorzy:
Jiang, Hui
Li, Wenjing
Li, Xueliang
Magnant, Colton
Powiązania:
https://bibliotekanauki.pl/articles/32083886.pdf
Data publikacji:
2021-05-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
proper (strong) rainbow connection number
Cartesian product
chromatic index
Opis:
A path in an edge-colored graph $G$ is called a rainbow path if no two edges on the path have the same color. The graph $G$ is called rainbow connected if between every pair of distinct vertices of $G$, there is a rainbow path. Recently, Johnson et al. considered this concept with the additional requirement that the coloring of $G$ is proper. The proper rainbow connection number of $G$, denoted by $prc(G)$, is the minimum number of colors needed to properly color the edges of $G$ so that $G$ is rainbow connected. Similarly, the proper strong rainbow connection number of $G$, denoted by $psrc(G)$, is the minimum number of colors needed to properly color the edges of $G$ such that for any two distinct vertices of $G$, there is a rainbow geodesic (shortest path) connecting them. In this paper, we characterize those graphs with proper rainbow connection numbers equal to the size or within 1 of the size. Moreover, we completely solve a question proposed by Johnson et al. by proving that if \(G = K_{p1} \Box \dots \Box K_{pn}\), where $n≥ 1$, and $p_1, . . ., p_n>1$ are integers, then $prc(G) = psrc(G) = χ^′(G)$, where $χ^′(G)$ denotes the chromatic index of $G$. Finally, we investigate some suffcient conditions for a graph $G$ to satisfy $prc(G) = rc(G)$, and make some slightly positive progress by using a relation between $rc(G)$ and the girth of the graph.
Źródło:
Discussiones Mathematicae Graph Theory; 2021, 41, 2; 469-479
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-7 z 7

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies