A strong edge-coloring of a graph is a proper edge-coloring where each color class induces a matching. We denote by $ \chi_s^' (G) $ the strong chromatic index of $G$ which is the smallest integer $k$ such that $G$ can be strongly edge-colored with $k$ colors. It is known that every planar graph $G$ has a strong edge-coloring with at most $ 4 \Delta (G) + 4 $ colors [R.J. Faudree, A. Gyárfás, R.H. Schelp and Zs. Tuza, The strong chromatic index of graphs, Ars Combin. 29B (1990) 205–211]. In this paper, we show that if $G$ is a planar graph with $ g \ge 5$, then $ \chi_s^' (G) \le 4 \Delta (G) − 2 $ when $ \Delta (G) \ge 6 $ and $ \chi_s^' (G) \le 19 $ when $ \Delta (G) = 5 $, where $g$ is the girth of $G$.
Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies
Informacja
SZANOWNI CZYTELNICY!
UPRZEJMIE INFORMUJEMY, ŻE BIBLIOTEKA FUNKCJONUJE W NASTĘPUJĄCYCH GODZINACH:
Wypożyczalnia i Czytelnia Główna: poniedziałek – piątek od 9.00 do 19.00