Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "recursive least squares" wg kryterium: Temat


Wyświetlanie 1-8 z 8
Tytuł:
Self-learning fuzzy predictor of exploitation system operating time
Autorzy:
Smoczek, J.
Szpytko, J.
Powiązania:
https://bibliotekanauki.pl/articles/247106.pdf
Data publikacji:
2011
Wydawca:
Instytut Techniczny Wojsk Lotniczych
Tematy:
operating time prediction
fuzzy logic
recursive least squares algorithm
overhead travelling crane
Opis:
The probability that a system is capable to operate satisfactorily significantly depends on reliability and maintainability of a system. The disadvantage of classic methods of system availability determining is that the probability of realizing by system tasks with expected quality depends on history of operational states and does not take into consideration actual operational conditions that have strong influence on risk-degree of down-time occurring, while the probability of degradation failure in exploitation system is a function of operating time and actual exploitation conditions. The problem of failures prediction can be solved by applying in diagnostics methods the intelligent computational algorithms. The intelligence computational methods enable to create the diagnosis tools that allow to formulate the prognosis of operating time of a system and predict of failure occurring based on the past and actual information about system's operational state. The paper presents the fuzzy logic approach to forecast the prognoses of the operating time of the exploitation system or its equipments according to the specified exploitation conditions that characterize the system exploitation state at the current time. The fuzzy system was based on the Takagi-Sugeno-Kang type fuzzy implications with singletons specifies in conclusions of rules. The fuzzy inference system input variables are the assumed parameters according to which the current exploitation state of the considered system can be evaluated.
Źródło:
Journal of KONES; 2011, 18, 4; 463-469
1231-4005
2354-0133
Pojawia się w:
Journal of KONES
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Estimation of vehicle sideslip angle via pseudo-multisensor information fusion method
Autorzy:
Chen, T.
Chen, L.
Cai, Y.
Xu, X.
Powiązania:
https://bibliotekanauki.pl/articles/220661.pdf
Data publikacji:
2018
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
vehicle state estimation
sideslip angle
recursive least squares
multi-sensor information fusion
pseudo-measurements
Opis:
This paper presents a novel sideslip angle estimator based on the pseudo-multi-sensor fusion method. The kinematics-based and dynamics-based sideslip angle estimators are designed for sideslip angle estimation. Also, considering the influence of ill-conditioned matrix and model uncertainty, a novel sideslip angle estimator is proposed based on the wheel speed coupling relationship using a modified recursive least squares algorithm. In order to integrate the advantages of above three sideslip angle estimators, drawing lessons from the multisensory information fusion technology, a novel thinking of sideslip angle estimator design is presented through information fusion of pseudo-multi-sensors. Simulations and experiments were carried out, and effectiveness of the proposed estimation method was verified.
Źródło:
Metrology and Measurement Systems; 2018, 25, 3; 499-516
0860-8229
Pojawia się w:
Metrology and Measurement Systems
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The UD RLS Algorithm for Training Feedforward Neural Networks
Autorzy:
Bilski, J.
Powiązania:
https://bibliotekanauki.pl/articles/908480.pdf
Data publikacji:
2005
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
sieć neuronowa
algorytm uczenia
metoda najmniejszych kwadratów
neural networks
learning algorithms
recursive least squares method
UD factorization
Opis:
A new algorithm for training feedforward multilayer neural networks is proposed. It is based on recursive least squares procedures and U-D factorization, which is a well-known technique in filter theory. It will be shown that due to the U-D factorization method, our algorithm requires fewer computations than the classical RLS applied to feedforward multilayer neural network training.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2005, 15, 1; 115-123
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Spider monkey optimization (SMO) - lattice Levenberg-Marquardt recursive least squares based grid synchronization control scheme for a three-phase PV system
Autorzy:
Dash, Dipak Kumar
Sadhu, Pradip Kumar
Subudhi, Bidyadhar
Powiązania:
https://bibliotekanauki.pl/articles/1845508.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
solar PV array
VSC
SMO
DC-DC converter
lattice Levenberg–Marquardt recursive least squares
hysteresis current controller
Opis:
This paper presents a new grid integration control scheme that employs spider monkey optimization technique for maximum power point tracking and Lattice Levenberg Marquardt Recursive estimation with a hysteresis current controller for controlling voltage source inverter. This control scheme is applied to a PV system integrated to a three phase grid to achieve effective grid synchronization. To verify the efficacy of the proposed control scheme, simulations were performed. From the simulation results it is observed that the proposed controller provides excellent control performance such as reducing THD of the grid current to 1.75%.
Źródło:
Archives of Control Sciences; 2021, 31, 3; 707-730
1230-2384
Pojawia się w:
Archives of Control Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Spider monkey optimization (SMO) - lattice Levenberg-Marquardt recursive least squares based grid synchronization control scheme for a three-phase PV system
Autorzy:
Dash, Dipak Kumar
Sadhu, Pradip Kumar
Subudhi, Bidyadhar
Powiązania:
https://bibliotekanauki.pl/articles/1845534.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
solar PV array
VSC
SMO
DC-DC converter
lattice Levenberg–Marquardt recursive least squares
hysteresis current controller
Opis:
This paper presents a new grid integration control scheme that employs spider monkey optimization technique for maximum power point tracking and Lattice Levenberg Marquardt Recursive estimation with a hysteresis current controller for controlling voltage source inverter. This control scheme is applied to a PV system integrated to a three phase grid to achieve effective grid synchronization. To verify the efficacy of the proposed control scheme, simulations were performed. From the simulation results it is observed that the proposed controller provides excellent control performance such as reducing THD of the grid current to 1.75%.
Źródło:
Archives of Control Sciences; 2021, 31, 3; 707-730
1230-2384
Pojawia się w:
Archives of Control Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
On possibilities of the practical implementation of balance-based adaptive control methodology
Autorzy:
Czeczot, J.
Powiązania:
https://bibliotekanauki.pl/articles/1839191.pdf
Data publikacji:
2007
Wydawca:
Polska Akademia Nauk. Instytut Badań Systemowych PAN
Tematy:
model-based adaptive control
practical implementation
bumpless switching
virtual controllers
programmable logic controller (PLC)
recursive least-squares estimation
Opis:
This paper deals with two approaches to the practical implementation of the Balance-Based Adaptive Controller(B-BAC): the low-level PLC-based approach of the explicit form of the B-BAC and the high-level PC-based one in the form of the general "virtual controller". In both cases, we discuss the details of meeting the general requirements of a particular practical implementation. We also consider the implementation aspects that are independent of the implementation, such as development of the front panel, saturation of a manipulated variable, on-line measurement and data acquisition, implementation of the on-line estimation procedure, bumpless switching between the automatic and manual mode, etc. Additionally, we present how to derive both the general form and the final explicit form of the B-BAC on the example of a biotechnological process and how to apply these forms in the particular practical implementation.
Źródło:
Control and Cybernetics; 2007, 36, 4; 967-984
0324-8569
Pojawia się w:
Control and Cybernetics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Intelligent financial time series forecasting: A complex neuro-fuzzy approach with multi-swarm intelligence
Autorzy:
Li, C.
Chiang, T. W.
Powiązania:
https://bibliotekanauki.pl/articles/331280.pdf
Data publikacji:
2012
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
zbiór rozmyty
system neuronowo-rozmyty
optymalizacja rojem cząstek
szereg czasowy
complex fuzzy set
complex neuro fuzzy system
hierarchical multi swarm
particle swarm optimization (PSO)
recursive least squares estimator
time series forecasting
Opis:
Financial investors often face an urgent need to predict the future. Accurate forecasting may allow investors to be aware of changes in financial markets in the future, so that they can reduce the risk of investment. In this paper, we present an intelligent computing paradigm, called the Complex Neuro-Fuzzy System (CNFS), applied to the problem of financial time series forecasting. The CNFS is an adaptive system, which is designed using Complex Fuzzy Sets (CFSs) whose membership functions are complex-valued and characterized within the unit disc of the complex plane. The application of CFSs to the CNFS can augment the adaptive capability of nonlinear functional mapping, which is valuable for nonlinear forecasting. Moreover, to optimize the CNFS for accurate forecasting, we devised a new hybrid learning method, called the HMSPSO-RLSE, which integrates in a hybrid way the so-called Hierarchical Multi-Swarm PSO (HMSPSO) and the well known Recursive Least Squares Estimator (RLSE). Three examples of financial time series are used to test the proposed approach, whose experimental results outperform those of other methods.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2012, 22, 4; 787-800
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Least-squares estimation for a long-horizon performance index
Autorzy:
Janiszowski, K. B.
Powiązania:
https://bibliotekanauki.pl/articles/911215.pdf
Data publikacji:
2000
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
identyfikacja
estymacja metodą najmniejszych kwadratów
przewidywanie
identification
least squares estimation
prediction
recursive scheme
Opis:
Estimation of a parametric, discrete-time model for a SISO dynamic plant, derived for minimisation of a performance index determined as a sum of squared prediction errors within some time horizon is considered. A formula for a Long-Horizon Least-Squares (LHLS) off-line solution as well as a theorem for an LHLS recursive on-line scheme are derived. The LHLS scheme reveals some features of Least-Squares (LS) estimation and Instrumental-Variable (IV) estimation. An algorithm for the on-line LHLS scheme is presented and compared with LS and IV estimation schemes for a linear, second-order system. The fast convergence of the derived LHLS on-line scheme is demonstrated in the case of detecting changes in parameters of a non-stationary system.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2000, 10, 3; 559-573
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-8 z 8

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies