Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "data clustering" wg kryterium: Temat


Wyświetlanie 1-3 z 3
Tytuł:
Classification of Large Data Sets. Comparison of Performance of Chosen Algorithms
Klasyfikacja dużych zbiorów porównanie wydajności wybranych algorytmów
Autorzy:
Dudek, Andrzej
Powiązania:
https://bibliotekanauki.pl/articles/905663.pdf
Data publikacji:
2013
Wydawca:
Uniwersytet Łódzki. Wydawnictwo Uniwersytetu Łódzkiego
Tematy:
clustering
classification
large data sets
Opis:
Researchers analyzing large (> 100,000 objects) data sets with the methods of cluster analysis often face the problem of computational complexity of algorithms, that sometimes makes it impossible to analyze in an acceptable time. Common solution of this problem is to use less computationally complex algorithms (like k-means), which in turn can in many cases give much worse results than for example algorithms using eigenvalues decomposition . The results of analysis of the actual sets of this type are therefore usually a compromise between quality and computational capabilities of computers. This article is an attempt to present the current state of knowledge on the classification of large datasets, and identify ways to develop and open problems.
Badacze analizujący przy pomocy metod analizy skupień duże (> 100.000 obiektów) zbiory danych, stają często przed problemem złożoności obliczeniowej algorytmów, uniemożliwiającej niekiedy przeprowadzenie analizy w akceptowalnym czasie. Jednym z rozwiązań tego problemu jest stosowanie mniej złożonych obliczeniowo algorytmów (hierarchiczne aglomeracyjne, k-średnich), które z kolei mogą w wielu sytuacjach dawać zdecydowanie gorsze rezultaty niż np. algorytmy wykorzystujące dekompozycję względem wartości własnych. Rezultaty rzeczywistych analiz tego typu zbiorów są więc zazwyczaj kompromisem pomiędzy jakością a możliwościami obliczeniowymi komputerów. Artykuł jest próbą przedstawienia aktualnego stanu wiedzy na temat klasyfikacji dużych zbiorów danych oraz wskazania dróg rozwoju i problemów otwartych.
Źródło:
Acta Universitatis Lodziensis. Folia Oeconomica; 2013, 285
0208-6018
2353-7663
Pojawia się w:
Acta Universitatis Lodziensis. Folia Oeconomica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Internal Cluster Quality Indexes for Classification of Symbolic Data
Mierniki jakości klasyfikacji dla danych symbolicznych
Autorzy:
Dudek, Andrzej
Powiązania:
https://bibliotekanauki.pl/articles/905043.pdf
Data publikacji:
2009
Wydawca:
Uniwersytet Łódzki. Wydawnictwo Uniwersytetu Łódzkiego
Tematy:
classification
clustering
cluster quality indexes
symbolic data
Opis:
This paper describes main classification methods used for symbolic data (e.g. data in form of: single quantitative value, categorical value, interval, multivalued variable, multivaliued variable with weights) presents difficulties of measuring clustering quality for symbolic data (such as lack of "traditional" data matrix), presents which of known indexes like Silhouette index, Ball index, Hartingan index, Baker and Hubert index, Huberta and Levine index, Ratkovski index, Ball index, Hartigan index, Krzanowski and Lai index, Scott index, Marriot index, Rubin index, Friedman index may be used for validation of such type of data and what indexes are specific only for symbolic data. Simulation results arc used to propose most adequate indexes for each classification algorithm.
Artykuł opisuje procedury klasyfikacyjne, które mogą być używane dla danych symbolicznych (tj. dla danych mogących być reprezentowanych w postaci: liczb, danych jakościowych, przedziałów liczbowych, zbioru wartości, zbioru wartości z wagami), przedstawia problemy związane z mierzeniem jakości klasyfikacji dla tych procedur (takie jak brak „klasycznej" macierzy danych) oraz przedstawia, które ze znanych indeksów, takich jak: Silhouette, indeks Calińskiego-Harabasza, indeks Bakera-Huberta, indeks Huberta-Levine, indeks Ratkowskiego, indeks Balia, indeks Hartigana, indeks Krzanowskiego-Lai, indeks Scotta, indeks Marriota, indeks Rubina i indeks Friedmana, mogą być wykorzystane dla tego typu danych oraz jakie są miary jakości podziału specyficzne dla danych symbolicznych. Na podstawie przeprowadzonych symulacji zaproponowane zostały indeksy faktycznie odzwierciedlające strukturę klas dla poszczególnych algorytmów klasyfikacyjnych.
Źródło:
Acta Universitatis Lodziensis. Folia Oeconomica; 2009, 225
0208-6018
2353-7663
Pojawia się w:
Acta Universitatis Lodziensis. Folia Oeconomica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The Comparison of Fuzzy Clustering Methods for Symbolic Interval-Valued Data
Porównanie metod klasyfikacji rozmytej dla danych symbolicznych interwałowych
Autorzy:
Pełka, Marcin
Dudek, Andrzej
Powiązania:
https://bibliotekanauki.pl/articles/1364881.pdf
Data publikacji:
2015-09-30
Wydawca:
Główny Urząd Statystyczny
Tematy:
spectral clustering
fuzzy clustering
fuzzy partition
interval-valued data
symbolic data analysis
klasyfikacja spektralna
klasyfikacja rozmyta
dane symboliczne interwałowe
analiza danych symbolicznych
Opis:
Interval-valued data can find their practical applications in such situations as recording monthly interval temperatures at meteorological stations, daily interval stock prices, etc. The primary objective of the presented paper is to compare three different methods of fuzzy clustering for interval-valued symbolic data, i.e.: fuzzy c-means clustering, adaptive fuzzy c-means clustering and fuzzy k-means clustering with fuzzy spectral clustering. Fuzzy spectral clustering combines both spectral and fuzzy approaches in order to obtain better results (in terms of Rand index for fuzzy clustering). The conducted simulation studies with artificial and real data sets confirm both higher usefulness and more stable results of fuzzy spectral clustering method, as compared to other existing fuzzy clustering methods for symbolic interval-valued data, when dealing with data featuring different cluster structures, noisy variables and/or outliers.
Dane symboliczne interwałowe mogą znaleźć zastosowanie w wielu sytuacjach – np. w przypadku notowań giełdowych, zmianach kursów walut, itp. Celem artykułu jest porównanie trzech metod klasyfikacji rozmytej dla danych symbolicznych interwałowych – tj. rozmytej klasyfikacji c-średnich, adaptacyjnej rozmytej klasyfikacji c-średnich oraz rozmytej klasyfikacji k-średnich z rozmytą klasyfikacją spektralną. Rozmyta klasyfikacja spektralna stanowi połączenie podejścia spektralnego oraz klasyfikacji rozmytej c-średnich, dzięki czemu możliwe jest otrzymanie lepszych rezultatów (w sensie indeksu Randa dla klasyfikacji rozmytych). Przeprowadzone badania symulacyjne wskazują, że rozmyta klasyfikacja spektralna dla danych symbolicznych pozwala na uzyskanie lepszych wyników niż inne rozmyte metody klasyfikacji dla tego typu danych jeżeli weźmiemy pod uwagę zbiory danych o różnej strukturze klas, która dodatkowo jest zniekształcana przez obserwacje odstające lub zmienne zakłócające.
Źródło:
Przegląd Statystyczny; 2015, 62, 3; 301-319
0033-2372
Pojawia się w:
Przegląd Statystyczny
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies