- Tytuł:
- Using GA for evolving weights in neural networks
- Autorzy:
-
Hameed, Wafaa Mustafa
Kanbar, Asan Baker - Powiązania:
- https://bibliotekanauki.pl/articles/118057.pdf
- Data publikacji:
- 2019
- Wydawca:
- Polskie Towarzystwo Promocji Wiedzy
- Tematy:
-
genetic algorithm
neural network
crossover
mutation
algorytm genetyczny
sieć neuronowa
skrzyżowanie
mutacja - Opis:
- This article aims at studying the behavior of different types of crossover operators in the performance of Genetic Algorithm. We have also studied the effects of the parameters and variables (crossover probability (Pc), mutation probability (Pm), population size (popsize) and number of generation (NG) for controlling the algorithm. This research accumulated most of the types of crossover operators these types are implemented on evolving weights of Neural Network problem. The article investigates the role of crossover in GAs with respect to this problem, by using a comparative study between the iteration results obtained from changing the parameters values (crossover probability, mutation rate, population size and number of generation). From the experimental results, the best parameters values for the Evolving Weights of XOR-NN problem are NG = 1000, popsize = 50, Pm = 0.001, Pc = 0.5 and the best operator is Line Recombination crossover.
- Źródło:
-
Applied Computer Science; 2019, 15, 3; 21-33
1895-3735 - Pojawia się w:
- Applied Computer Science
- Dostawca treści:
- Biblioteka Nauki