Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Improving estimation accuracy of metallurgical performance of industrial flotation process by using hybrid genetic algorithm – artificial neural network (GA-ANN)

Tytuł:
Improving estimation accuracy of metallurgical performance of industrial flotation process by using hybrid genetic algorithm – artificial neural network (GA-ANN)
Autorzy:
Allahkarami, E.
Salmani Nuri, O.
Abdollahzadeh, A.
Rezai, B.
Maghsoudi, B.
Powiązania:
https://bibliotekanauki.pl/articles/109424.pdf
Data publikacji:
2017
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
artificial neural network
genetic algorithm
prediction
copper flotation
Źródło:
Physicochemical Problems of Mineral Processing; 2017, 53, 1; 366-378
1643-1049
2084-4735
Język:
angielski
Prawa:
Wszystkie prawa zastrzeżone. Swoboda użytkownika ograniczona do ustawowego zakresu dozwolonego użytku
Dostawca treści:
Biblioteka Nauki
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
In this study, a back propagation feed forward neural network, with two hidden layers (10:10:10:4), was applied to predict Cu grade and recovery in industrial flotation plant based on pH, chemical reagents dosage, size percentage of feed passing 75 μm, moisture content in feed, solid ratio, and grade of copper, molybdenum, and iron in feed. Modeling is performed basing on 92 data sets under different operating conditions. A back propagation training was carried out with initial weights randomly mode that may lead to trapping artificial neural network (ANN) into the local minima and converging slowly. So, the genetic algorithm (GA) is combined with ANN for improving the performance of the ANN by optimizing the initial weights of ANN. The results reveal that the GA-ANN model outperforms ANN model for predicting of the metallurgical performance. The hybrid GA-ANN based prediction method, as used in this paper, can be further employed as a reliable and accurate method, in the metallurgical performance prediction.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies